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ABSTRACT

We study the cyclical implications of credit market imperfections in a dynamic, stochastic general
equilibrium model wherein firms face persistent shocks to both aggregate and individual produc-
tivity. In our model economy, optimal capital reallocation is distorted by two frictions. First,
collateralized borrowing constraints limit the investment undertaken by small firms with relatively
high productivity. Second, specificity in firm-level capital implies partial investment irreversibil-
ities that lead firms to pursue (S,s) decision rules. This second friction compounds the first in
implying that a subset of firms carry a share of the aggregate capital stock disproportionate to
their productivity, thereby reducing endogenous aggregate total factor productivity.

In the presence of persistent heterogeneity in capital, debt and total factor productivity, the effects
of a financial shock are amplified and propagated through large and long-lived disruptions to the
distribution of capital that, in turn, imply large and persistent reductions in aggregate total factor
productivity. Measuring these effects in a quantitative model, we find that an unanticipated
tightening in borrowing conditions can, on its own, generate a large recession more persistent
than the financial shock itself. This recession, and the subsequent recovery, is distinguished both
quantitatively and qualitatively from that driven by exogenous shocks to total factor productivity.
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I. Introduction

Can a large shock to an economy’s financial sector produce a large and lasting recession? Over

the past few years, events in the real and financial sectors of the U.S. and other large, developed

economies have been diffi cult to disentangle. In this paper, we develop a quantitative, dynamic

stochastic general equilibrium model to explore how real and financial shocks affect the size and

frequency of aggregate fluctuations. Firms in our model experience persistent shocks to both

aggregate and individual productivity, while credit market frictions interact with real frictions to

yield persistent disruptions to the effi cient allocation of capital, and thus persistent reductions in

aggregate total factor productivity. Calibrating the model to aggregate and microeconomic data,

we use it as a laboratory in which to examine the question raised above.

Capital reallocation is impeded by two frictions in our model, one financial and one real.

First, collateralized borrowing constraints limit investment loans. Second, partial irreversibilities

in investment lead firms to follow (S,s) rules with respect to their capital. The model gives rise

to a rich distribution of firms over idiosyncratic productivity, capital and financial assets. Within

this distribution, a subset of firms have investment curtailed by their current ability to borrow,

while a second subset have suffi cient resources as to have permanently outgrown the implications

of collateral constraints. Most firms fall into a third class, one where borrowing constraints do

not currently bind, but the prospect that they may bind in future affects current decisions.

We are to our knowledge the first to explore the endogenous TFP channel in a quantitative

DSGE setting where real frictions slow the reallocation of capital across firms, and where that

reallocation is essential in determining aggregate total factor productivity. We show that a shock

to the availability of credit can, on its own, generate a large and protracted recession, because

it induces changes in the distribution of firms. These changes bring about a large, but gradual,

deterioration in aggregate productivity by disrupting the allocation of capital further from that

implied by firm productivities.

Our model is consistent with evidence from the Flow of Funds that, in the aggregate, nonfi-

nancial firms can finance investment expenditures from cash flows (Chari (2012)). Furthermore,

our average cash holdings closely match the high corporate cash ratios in the Compustat just

prior to the 2007 U.S. recession (Bates, Kahle and Stulz (2009)). Nonetheless, because individual

firms have differing credit needs and access, the model predicts a sharp reduction in real economic

activity when hit by a credit shock suffi cient to reproduce observed recent declines in lending.
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The extent of capital reallocation in ordinary times influences how much a shock to the

availability of credit disrupts real economic activity. While partial capital irreversibility compli-

cates our analysis, it is essential in allowing the model to reproduce important moments from the

distribution of microeconomic investment rates, and thus for measuring the stochastic process gov-

erning firm-level productivity shocks. The model’s ability to capture the effective importance of

financial frictions is further demonstrated by its success in reproducing the average cross-sectional

size-leverage correlation and standard deviation of cash ratios in micro-level financial data.

When we consider a temporary shock affecting individual firms’access to credit, our model

predicts aggregate changes resembling those from the 2007 U.S. recession in several respects. It

delivers a gradual deterioration of GDP, a delayed decline in consumption, and an unusually

steep fall in investment. It also captures the magnitudes of decline in U.S. GDP and investment,

alongside reductions in total lending consistent with several measures from the data. Further, the

resulting shifts in the distribution of production across firms drive endogenous changes in aggregate

TFP explaining more than half of the observed decline. Finally, employment declines among small

firms exceed those among large firms, consistent with Census evidence we present. By contrast, an

exogenous shock to total factor productivity generates declines in GDP, employment, investment,

and lending far weaker than those in the 2007 recession, and it delivers an equal incidence of

employment decline among small versus large firms.

We argue that our analytical framework captures real and financial frictions that are vital in

explaining actual microeconomic reallocation and may thus shape macroeconomic outcomes. Our

findings suggest that changes in firms’access to credit are important in understanding the recent

U.S. recession. However, we would not claim that our model explains the 2007 recession. We

explore one channel, increased capital misallocation, but abstract from others, such as changes

in households’ access to credit and labor market imperfections, that also seem to have been

important. Thus, the simple credit crisis exercise considered here cannot, in itself, explain the

U.S. recovery episode beginning in the second half of 2009. Most notably, while its GDP recovery

is gradual, our model cannot simultaneously account for the growth in TFP alongside much weaker

growth in employment and investment.

The numerical method used to solve our model may be of independent interest. We first

identify a set of firms with suffi cient assets so that collateralized borrowing limits can never again

affect their choice of capital. Using non-linear methods to approximate their value functions,
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we characterize the behavior of these firms, including both their investment in physical capital

and their debt or savings. We use the resulting value function as the starting point to solve the

decision rules of other firms in the economy. Since our aggregate state involves a distribution of

firms over productivity, capital and financial assets, we also must extend existing aggregate state

space approximation methods to compute equilibria in the presence of both real and financial

shocks.

The remainder of the paper is organized as follows. Section II summarizes the literature most

related to our work. Section III presents the model economy, and section IV provides analysis

useful in developing a numerical algorithm capable of its solution. In section V, we describe our

calibration to moments drawn from postwar U.S. aggregate and firm-level data and discuss the

solution method. Section VI presents results, and section VII concludes.

II. Related literature

There is a large related literature exploring how financial frictions influence the aggregate

response to non-financial shocks. Leading this literature, Kiyotaki and Moore (1997) develop a

model of credit cycles and show that collateral constraints can have a large role in amplifying and

propagating shocks to the value of collateral.1 Our own work follows in the spirit of Kiyotaki and

Moore in that the financial frictions we explore are collateralized borrowing constraints. However,

our collateral constraints are anchored on firms’existing, rather than future, capital stocks. This

gives rise to firm-level dynamics reminiscent of those in models with constrained optimal dynamic

contracts.2

While we assume collateral constraints, there are well-known alternative approaches. Coo-

ley, Marimon and Quadrini (2004) study constrained-optimal dynamic contracts under limited

enforceability. Elsewhere, a large literature examines agency costs as the source of financial fric-

tions.3 These papers do not consider financial shocks as such, and they abstract from potentially

important heterogeneity under which the allocation of capital, and thus credit, becomes relevant.

Over the past few years, several studies have begun exploring how financial shocks affect

1Cordoba and Ripoll (2004) and Kocherlakota (2000) argue that these effects are quantitatively minor in cal-
ibrated versions of the model. Kiyotaki (1998) extends Kiyotaki and Moore (1997) to accomodate log utility,
differing productivities between productive and unproductive agents, and the switching of types.

2For example, our young firms grow as their ability to borrow rises, and mean growth rates fall with age and
size. Albuquerque and Hopenhayn (2004) derive these regularities in a model with limited enforceability, while
Clementi and Hopenhayn (2006) derive them under private information.

3See Bernanke and Gertler (1989), Carlstrom and Fuerst (1997), and Bernanke, Gertler and Gilchrist (1999).
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aggregate fluctuations. Our emphasis on firm borrowing subject to collateral constraints is com-

plementary to Boz and Mendoza (2012), who study borrowing by a representative household in

a small open economy where land serves as collateral. Examining the effect of financial innova-

tion with uncertain persistence, and assuming Bayesian learning, they explain large increases in

household debt and land prices given optimistic priors.

Our focus on the aggregate implications of financial shocks is also shared by the work of

Jermann and Quadrini (2012). They develop a representative firm model where investment is

financed using both debt and equity, and costs of adjusting dividends prevent the avoidance of

financial frictions. These frictions stem from limited enforceability of debt contracts, which gives

rise to endogenous borrowing limits. If the firm chooses to default, the lender can only recover

a fraction of its net worth, and shocks to the fraction the lender can confiscate alter the severity

of borrowing limits. Measuring these credit shocks, Jermann and Quadrini find that they have

been an important source of business cycles.4

In contrast to Jermann and Quadrini’s model, the financial frictions in our setting do not

significantly dampen aggregate responses to non-financial shocks. This may be useful in light

of findings by Reinhart and Rogoff (2009) and Bianchi and Mendoza (2012) that large financial

shocks are rare in postwar U.S. history. We also capture important aspects of microeconomic

investment behavior by including both heterogenous firms and partial capital irreversibility.5

Firms in our model accumulate capital and may borrow or save. They have a natural ma-

turing phase and tend to eventually overcome the effect of collateral constraints on investment.

Thus, the incidence of a credit shock differs, and we can explore the extent to which small firms

with greater reliance on investment loans are disproportionately affected. Moreover, following

such shocks, shifts in the distribution of capital drive endogenous movements in aggregate total

factor productivity through misallocation. By accommodating differences in financial capital, our

model matches both aggregate debt and the cash held by nonfinancial firms in the data. Thus,

we can consider how much firms’savings mitigate the effect of a fall in lending. However, because

we do not have a working capital constraint, borrowing limits do not directly affect our firms’

employment decisions. This is the main channel through which financial shocks have real effects

4Jermann and Quadrini (2009) adapt this model to address the variability of real and financial variables in the
past 25 years.

5See Veracierto (2002) for a DSGE analysis of how these frictions affect aggregate responses to productivity
shocks. Caggese (2007) considers irreversible capital and collateral constraints; our study is distinguished from his
by general equilibrium analysis, partial reversibility in investment, and frictionless within-period borrowing.

4



in Jermann and Quadrini (2012).

Our paper contributes to a body of work exploring the effects of financial frictions in models

with heterogeneous firms. Arellano, Bai and Kehoe (2012) examine the role of uncertainty shocks

in a model with non-contingent debt and equilibrium default. Gomes and Schmid (2010) develop

a model with endogenous default, where firms vary with respect to their leverage, and study the

implication for credit spreads. Gilchrist, Sim and Zakrajšsek (2011) study credit spreads under

uncertainty shocks in a model with default.6

Buera and Moll (2013) share our focus on collateral constraints in an economy with produc-

tion heterogeneity. They assume entrepreneurs operating constant returns to scale production

technologies subject to i.i.d. productivity shocks. When investment loans are subject to collateral

constraints requiring debt not exceed a proportion of future capital, and future productivity is

known before capital is allocated, Buera and Moll establish that shocks to collateral constraints

are isomorphic to shocks to aggregate total factor productivity.

In our model, credit shocks lead to gradual reductions in aggregate total factor productivity

that are qualitatively different from persistent shocks to its exogenous component. We assume

firms operating decreasing returns to scale production technologies subject to persistent idiosyn-

cratic shocks not observed in advance, and assume that existing, not future, capital serves as

collateral. These assumptions together imply that firms eventually overcome the effect of collat-

eral constraints and adopt effi cient levels of capital. By introducing entry and exit, and assuming

entrants have less capital than the typical firm, we ensure that the aggregate effects of collateral

constraints persist over time. Credit shocks in our model drive non-monotone responses in aggre-

gate total factor productivity, because the misallocation of resources grows as a growing fraction

of firms finds it increasingly diffi cult to finance investment. Furthermore, our approach allows us

to use micro-data to measure the idiosyncratic productivity process using several moments from

the distribution of firm-level investment. Because the extent of the misallocation of capital hinges

on the distribution of productivity across firms, this is a potentially important prerequisite for

quantitatively assessing the aggregate importance of credit shocks.

6Credit spreads are also emphasized by Gertler and Kiyotaki (2010) in a model where such spreads are driven
by agency problems arising with financial intermediaries.
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III. Model

In our model economy, firms face both partial capital fixity and collateral constraints, which

together compound the effects of persistent differences in their total factor productivities to yield

substantial heterogeneity in production. We begin our description of the economy with an initial

look at the optimization problem facing each firm, then follow with a discussion of households

and equilibrium. Next, in section IV, we use a simple implication of equilibrium alongside some

immediate observations about firms’optimal allocation of profits across dividends and retained

earnings to characterize the capital adjustment decisions of our firms. This analysis allows us to

derive a convenient, computationally tractable algorithm to solve for equilibrium allocations in

our model, despite its three-dimensional heterogeneity in production.

A. Production, credit and capital adjustment

We assume a large number of firms, each producing a homogenous output using predetermined

capital stock k, and labor n, via an increasing and concave production function, y = zεF (k, n).

The variable z represents exogenous stochastic total factor productivity common across firms,

while ε is a firm-specific counterpart. We assume that ε is a Markov chain; ε ∈ E ≡ {ε1, . . . , εNε},

where Pr (ε′ = εj | ε = εi) = πij ≥ 0, and
∑Nε

j=1 πij = 1 for each i = 1, . . . , Nε. Similarly, z ∈

{z1, . . . , zNz}, where Pr (z′ = zg | z = zf ) = πzfg ≥ 0, and
∑Nz

g=1 π
z
fg = 1 for each f = 1, . . . , Nz.

Because our interest is in understanding how financial constraints shape the investment deci-

sions taken by firms in our economy, we must prevent firms accumulating suffi cient resources that

none will never again experience a binding borrowing limit. To ensure this does not occur, we

impose exit and entry in the model. In particular, we assume each firm faces a fixed probability,

πd ∈ (0, 1), that it will be forced to exit the economy following production in any given period.

Within a period, prior to investment, firms learn whether they will survive to produce in the next

period. Exiting firms are replaced by an equal number of new firms whose initial state will be

described below.

At the beginning of each period, a firm is defined by its predetermined stock of capital,

k ∈ K⊂R+, by the level of one-period debt it incurred in the previous period, b ∈ B⊂R, and

by its current idiosyncratic productivity level, ε ∈ E. Immediately thereafter, the firm learns

whether it will survive to produce in the next period.7 Given this individual state and the current

7For computational tractability, we make the exit shock orthogonal so that all firms borrow at a common interest
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aggregate state, the firm takes a series of actions to maximize the expected discounted value

of dividends returned to its shareholders, the households in our economy. First, it chooses its

current level of employment, undertakes production, and pays its wage bill. Thereafter, it repays

its existing debt and, conditional on survival, it chooses its investment, i, current dividends, and

the level of debt with which it will enter into the next period, b′. For each unit of debt it incurs for

the next period, a firm receives q units of output that it can use toward paying current dividends

or investing in its future capital. The relative price q−1 reflecting the interest rate at which firms

can borrow and lend is a function of the economy’s aggregate state, as is the wage rate ω paid

to workers. For expositional convenience, we suppress the arguments of these equilibrium price

functions until we have described the model further.

Our model economy is distinguished from most in allowing an interaction between real and

financial frictions. Two external forces together determine what fraction of its capital stock a

firm can borrow against - the degree of specificity in capital and the enforceability of financial

arrangements. Firms face collateralized borrowing constraints of the form b′ ≤ ζθkk in each

period, where θk ∈ [0, 1] is a parameter reflecting the fraction of a firm’s capital stock that

survives when it is uninstalled, and ζ ∈
{
ζ1, . . . , ζNζ

}
is the fraction of that collateral firms can

borrow against. The credit variable, ζ, may be interpreted as reflecting the effi ciency of the

economy’s financial sector. We assume it is common across firms and follows a Markov chain,

with Pr
(
ζ ′ = ζk | ζ = ζh

)
= πζhk and

∑Nζ
k=1 π

ζ
hk = 1 for h = 1, . . . , Nζ . For convenience below, we

summarize the economy’s exogenous aggregate state by s = (z, ζ) and its transition probabilities

by πslm = Pr (s′ = (z, ζ)m | s = (z, ζ)l), where each πslm is derived from the transition probabilities

πζhk and π
z
fg, and we denote the real and financial shocks in realized state sl as zl and ζ l, for each

l = 1, ..., Ns (where Ns = NzNζ).

If a firm undertakes any nonnegative level of investment, i ≥ 0, its capital stock at the

start of the next period is determined by a familiar accumulation equation, k′ = (1− δ) k + i,

where δ ∈ (0, 1) is the rate of capital depreciation, and primes indicate one-period-ahead values.

Because there is some degree of specificity in capital, the same equation does not apply when the

firm undertakes negative investment. In this case, the effective relative price of investment is θk

rather than 1, so the accumulation equation is θkk′ = θk (1− δ) k + i when i < 0.

rate. Our timing is to ensure there is no equilibrium default. Because the only firms borrowing are those that will
produce next period, and the debt they take on is limited by a collateral constraint, firms always repay their debt
in our quantatitative exercises.
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As noted in section I, we include partial irreversibility so our model can be calibrated to repro-

duce important moments from the distribution of establishment investment rates. We adopt this

real friction over others, because it allows us to match the frequency of large (spike) investments

alongside the weakly positive autocorrelation of investment rates observed in microeconomic data.

Firm-level quadratic adjustment costs can achieve the latter only at the expense of the former,

since they imply an increasing marginal cost of adjustment. Randomly-drawn nonconvex costs

of capital adjustment are associated with investment spikes, but do not overturn negative serial

correlation in investment rates; the implied increasing returns adjustment technology makes a

firm with positive investment in one period unlikely to invest in the next.

We show in section IV that partial irreversibility (a linear cost) naturally yields two-sided

(S, s) investment decision rules; firms have nonzero investment only when their capital falls outside

an (S, s) inactivity band.8 A firm in our model finding itself with an unacceptably high capital

stock (given its current productivity) will reduce its stock only to the upper bound of its inactivity

range. Similarly, a firm with too little capital invests only to the lower bound of its inactivity

range to reduce the linear penalty it will incur it if later chooses to shed capital. Thus, partial

irreversibility can deliver persistence in firms’ investment rates by encouraging repeated small

investments at the edges of inactivity bands.

As mentioned above, a firm’s capital adjustment may also be influenced by its ability to

borrow. This is in turn affected by the capital (collateral) it currently holds. Further, the

firm’s current investment decision may influence the level of debt it carries into the next period.

These observations imply that we must monitor the distinguishing features of firms along three

dimensions: their capital, k, their debt, b, and their idiosyncratic productivity, ε. Thus, in contrast

to models with loan market frictions, but without capital adjustment frictions, a firm’s cash on

hand is an insuffi cient description of its state; capital and debt are distinct state variables.

We summarize the distribution of firms over (k, b, ε) using the probability measure µ defined

on the Borel algebra, S, generated by the open subsets of the product space, S = K×B×E. The

aggregate state of the economy is (s, µ), and the distribution of firms evolves over time according

to a mapping, Γ, from the current aggregate state; µ′ = Γ (s, µ). The evolution of the firm

distribution is determined in part by the actions of continuing firms and in part by entry and

exit. As mentioned above, fraction πd of firms exit the economy after production in each period.

8The problem of costly investment reversibility is solved by Abel and Eberly (1996). Dixit and Pindyck (1994)
develop an analysis emphasizing the option value of waiting to invest.
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These firms are replaced by the same number of new firms. Each new firm has zero debt and

productivity ε0 ∈ E drawn from the ergodic distribution implied by {πij}, and each enters with

an initial capital stock k0 ∈ K.

We now turn to the problem solved by each firm in our economy. Let v0 (k, b, εi; sl, µ) rep-

resent the expected discounted value of a firm that enters the period with (k, b) and firm-specific

productivity εi, when the aggregate state of the economy is (sl, µ), just before it learns whether

it will survive into the next period. We state the firm’s dynamic optimization problem using a

functional equation defined by (1) - (4) below.

v0 (k, b, εi; sl, µ) = πd max
n

[zlεiF (k, n)− ω (sl, µ)n+ θk (1− δ) k − b] (1)

+ (1− πd)v (k, b, εi; sl, µ)

After the start of the period, the firm knows which line of (1) will prevail. If it is not

continuing beyond the period, the firm simply chooses labor to maximize its current dividend

payment to shareholders. Because it will carry no capital or debt into the future, an exiting firm’s

dividends are its output, less wage payments and debt repayment, together with the capital it can

successfully uninstall at the end of the period. The problem conditional on continuation is more

involved, because a continuing firm must choose its current labor and dividends alongside its future

capital and debt. For expositional convenience, given the partial irreversibility in investment, we

begin to describe this problem by defining the firm’s value as the result of a binary choice between

upward versus downward capital adjustment in (2), then proceed to identify the value associated

with each option in (3) and (4).

v (k, b, εi; sl, µ) = max
{
vu (k, b, εi; sl, µ) , vd (k, b, εi; sl, µ)

}
(2)

Assume that dm (sl, µ) is the discount factor applied by firms to their next-period expected

value if the exogenous aggregate state at that time is sm and the current aggregate state is

(sl, µ). Taking as given the evolution of ε and s according to the transition probabilities specified

above, and given the evolution of the distribution, µ′ = Γ (s, µ), the firm solves the following

two optimization problems to determine its values conditional on (weakly) positive and negative

capital adjustment. In each case, the firm selects its current employment and production, alongside

the debt and capital with which it will enter into next period and current dividends, D, to
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maximize its expected discounted dividends. As above, dividends are determined by the firm’s

budget constraint as the residual of current production and borrowing after its wage bill and debt

repayment have been covered, net of investment expenditures.

Conditional on an upward capital adjustment, the firm solves the following problem con-

strained by (i) the fact that investment must be non-negative, (ii) a borrowing limit determined

by its collateral, and (iii)-(iv) the requirements that dividends be non-negative and satisfy the

firm’s budget constraint.

vu (k, b, εi; sl, µ) = max
n,k′,b′,D

[
D +

Ns∑
m=1

πslmdm (sl, µ)

Nε∑
j=1

πijv0

(
k′, b′, εj ; sm, µ

′)] (3)

subject to: k′ ≥ (1− δ) k, b′ ≤ ζ lθkk,

0 ≤ D ≤ zlεiF (k, n)− ω (sl, µ)n+ q (sl, µ) b′ − b− [k′ − (1− δ) k],

and µ′ = Γ(s, µ)

The downward adjustment problem differs from that above only in that investment must be

non-positive and, thus, its relative price is θk.

vd (k, b, εi; sl, µ) = max
n,k′,b′,D

[
D +

Ns∑
m=1

πslmdm (sl, µ)

Nε∑
j=1

πijv0

(
k′, b′, εj ; sm, µ

′)] (4)

subject to: k′ ≤ (1− δ) k, b′ ≤ ζ lθkk,

0 ≤ D ≤ zlεiF (k, n)− ω (sl, µ)n+ q (sl, µ) b′ − b− θk[k′ − (1− δ) k],

and µ′ = Γ(s, µ)

Notice that there is no friction associated with the firm’s employment choice, since the firm

pays its current wage bill after production takes place, and its capital choice for next period also

has no implications for current production. Thus, irrespective of their current debt or continuation

into the next period, all firms sharing in common the same (k, ε) combination select employment

N (k, ε; s, µ) and production y(k, ε; s, µ).9 By contrast, the intertemporal decisions of continuing

firms depend upon the full firm-level state, given the presence of both borrowing limits and

irreversibilities. Let K (k, b, ε; s, µ) and B (k, b, ε; s, µ) represent the choices of next-period capital

and debt, respectively, made by firms of type (k, b, ε). We characterize these decision rules below

9Here forward, except where necessary for clarity, we suppress the indices for the current exogenous aggregate
state (l) and firm productivity, (i).
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in section IV.

B. Households

The economy is populated by a unit measure of identical households. Household wealth is held

as one-period shares in firms, which we identify using the measure λ, and in one-period noncontin-

gent bonds, φ.10 Given the (dividend-inclusive) values of their current shares, ρ0 (k, b, ε; s, µ), the

bond price q (s, µ)−1, and the real wage ω (s, µ), households determine their current consumption,

c, hours worked, nh, new bond holdings φ′, as well as the numbers of new shares, λ′ (k′, b′, ε′),

to purchase at ex-dividend prices ρ1 (k′, b′, ε′; s, µ).11 The lifetime expected utility maximization

problem of the representative household is listed below.

V h (λ, φ; sl, µ) = max
c,nh,φ′,λ

′

[
U
(
c, 1− nh

)
+ β

Ns∑
m=1

πslmV
h
(
λ′, φ′; sm, µ

′)] (5)

subject to

c+ q(s, µ)φ′ +

∫
S
ρ1

(
k′, b′, ε′; sl, µ

)
λ′
(
d
[
k′ × b′ × ε′

])
≤
[
ω (sl, µ)nh + φ

+

∫
S
ρ0 (k, b, ε; sl, µ)λ (d [k × b× ε])

]
and µ′ = Γ(s, µ)

Let Ch (λ, φ; s, µ) describe the household decision rule for current consumption, and let

Nh (λ, φ; s, µ) be the rule determining the allocation of current available time to working. Let

Φh(λ, φ; s, µ) describe the household decision rule for bonds, and let Λh (k′, b′, ε′, λ, φ; s, µ) be the

quantity of shares purchased in firms that will begin the next period with k′ units of capital, b′

units of debt, and idiosyncratic productivity ε′.

10Households also have access to a complete set of state-contingent claims. As there is no household heterogeneity,
these assets are in zero net supply in equilibrium; thus, for simplicity sake, we do not explicitly model them here.
11 In equilibrium, ρ1 (k

′, b′, ε′; s, µ) is the expected discounted value of owning a share in type (k′, b′, ε′) firms at
the start of the next period. Although ε′ is drawn by individual firms at the start of the next period, the household
can choose its ownership of type (k′, b′, ε′) firms in the current period, since it knows the ε transition probabilities
and the law of large numbers applies.
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C. Recursive equilibrium

A recursive competitive equilibrium is a set of functions,

(
ω, q, (dm)Nsm=1 , ρ0, ρ1, v0, N,K,B,D, V

h, Ch, Nh,Φh,Λh
)
,

that solve firm and household problems and clear the markets for assets, labor and output, as

described by the following conditions.

(i) v0 solves (1) - (4), N is the associated policy function for exiting firms, and (N,K,B,D)

are the associated policy functions for continuing firms

(ii) V h solves (5), and
(
Ch, Nh,Λh

)
are the associated policy functions for households

(iii) Λh (k′, b′, εj , µ, φ; s, µ) = µ′ (k′, b′, εj ; s, µ), for each (k′, b′, εj) ∈ S

(iv) Nh (µ, φ; s, µ) =

∫
S

[
N (k, ε; s, µ)

]
µ(d [k × b× ε])

(v) Ch (µ, φ; s, µ) =

∫
S

[
zεF (k,N (ε, k; s, µ))− (1− πd)J

(
K (k, b, ε; s, µ)− (1− δ) k

)
(
K (k, b, ε; s, µ) − (1− δ) k

)
+ πd[θk(1− δ)k − k0]

]
µ(d [k × b× ε]),

where J (x) = 1 if x ≥ 0; θk otherwise

(vi) µ′ (A, εj) = (1−πd)
∫

{(k,b,εi) | (K(k,b,εi;s,µ),B(k,b,εi;s,µ))∈A}
πijµ(d [k × b× εi]) +πdχ(k0)H(εj),

∀ (A, εj) ∈ S, defines Γ, where χ(k0) = {1 if (k0, 0) ∈ A; 0 otherwise}

The bond market clearing condition, Φh(µ, φ; s, µ) =

∫
S

[
B (k, b, ε; s, µ)

]
µ(d [k × b× ε]), is satisfied

by Walras’Law.

IV. Analysis

To solve for recursive competitive equilibrium, we begin by devising a reformulation of firms’

problems that subsumes the effi ciency conditions arising from the household problem. Let C

and N describe the market-clearing values of household consumption and hours worked satisfying

conditions (iv) and (v) above, and denote next period’s equilibrium consumption and hours worked

when s′ = sm as C ′m and N ′m, respectively. It is straightforward to show that market-clearing

requires that (a) the real wage equal the household marginal rate of substitution between leisure

and consumption, ω (s, µ) = D2U (C, 1−N) /D1U (C, 1−N), (b) the bond price, q−1, equal the
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expected gross real interest rate,

q (s, µ) = β

Ns∑
m=1

πslmD1U
(
C ′m, 1−N ′m

)
/D1U (C, 1−N) ,

and (c) firms’state-contingent discount factors agree with the household marginal rate of substi-

tution between consumption across states dm (s, µ) = βD1U (C ′m, 1−N ′m) /D1U (C, 1−N). We

compute equilibrium by solving the firm problem with these implications of household utility

maximization imposed, effectively subsuming households’decisions into the problems faced by

firms.

Without loss of generality, we assign p(s, µ) as an output price at which firms value cur-

rent dividends and payments and correspondingly assume that firms discount their future values

by the household subjective discount factor. Given this alternative means of expressing firms’

discounting, the following three conditions ensure all markets clear in our economy.

p (s, µ) = D1U (C, 1−N) (6)

ω (s, µ) = D2U (C, 1−N) /p (s, µ) (7)

q (s, µ) = β

Ns∑
m=1

πslmp
(
sm, µ

′) /p (s, µ) (8)

Our reformulation of (1) - (4) below yields an equivalent description of the firm-level problem

where each firm’s value is measured in units of marginal utility, rather than output, with no change

in the resulting decision rules. Here, we exploit the fact that the choice of n is independent of the

k′ and b′ choices, and use the indicator function J (x) = {1 if x ≥ 0 ; θk if x < 0} to distinguish

the relative price of nonnegative versus negative investment.

V0 (k, b, εi; sl, µ) = πd max
n

p(sl, µ)
[
zlεiF (k, n)− ω(sl, µ)n (9)

+θk (1− δ) k − b
]

+ (1− πd)V (k, b, εi; sl, µ) ,
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where V (k, b, εi; sl, µ) = max
n,k′,b′,D

[
p(sl, µ)D + β

Ns∑
m=1

Nε∑
j=1

πslmπijV0

(
k′, b′, εj ; sm, µ

′)] (10)

subject to

0 ≤ D ≤ zlεiF (k, n)− ω(sl, µ)n+ q(sl, µ)b′ − b− J
(
k′ − (1− δ) k

)
[k′ − (1− δ) k] (11)

and b′ ≤ ζ lθkk (12)

The problem listed in equations (9) - (12) forms the basis for solving equilibrium allocations

in our economy, so long as the prices p, ω and q taken as given by our firms satisfy the restrictions

in (6) - (8) above.12 From here, we begin to characterize the decision rules arising from this

problem. A firm of type (k, b, ε) chooses its labor n = N (k, ε; s, µ) to solve zεD2F (k, n) = ω,

thereby determining its current production, y (k, ε) = zεF (k,N (k, ε; s, µ)), and its earnings net

of labor costs and debt, π (k, b, ε):

π(k, b, ε, s, µ) ≡ zεF (k,N (k, ε; s, µ))− ω(s, µ)N (k, ε; s, µ)− b. (13)

The more challenging objects to determine are D, k′ and b′ among continuing firms. To disen-

tangle these, we use a simple observation about the implications of borrowing constraints for the

valuation of retained earnings versus dividends, and sort firms into two categories.

If a firm places non-zero probability weight on encountering a state in which its collateral

constraint will bind, we identify it as constrained ; otherwise, it is unconstrained. To be clear, a

constrained firm need not face a binding collateral constraint in the current period; our definition

includes firms perceiving risk of a binding constraint in the future. The shadow value of retained

earnings for a constrained firm includes the discounted value of at least one strictly positive

multiplier on a future borrowing constraint, so it exceeds the valuation of current dividends, p.13

Thus, any such firm sets D = 0, and its choice of k′ directly implies a level of debt for next

period through the binding budget constraint in (11). We will return to the resulting univariate

problem of a constrained firm below. However, it is useful to first characterize the decisions of

unconstrained firms, whose capital choices are unaffected by borrowing limits.

12Here, and in many instances below, we suppress the s, µ arguments of price functions, decision rules and
firm-level state vectors to reduce notation.
13This is easily proved using a sequence approach with explicit multipliers on each constraint; see Caggese (2007).
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A. Decisions among unconstrained firms

An unconstrained firm has accumulated suffi cient capital or financial wealth to ensure that

collateral constraints will never again affect its investment activities. For any such firm, the

multipliers on all future borrowing constraints are zero. Thus it is indifferent between financial

savings and dividends; its marginal value of retained earnings equals the household valuation, p.

Let W0 represent the beginning-of-period expected value of an unconstrained firm and W be

the firm’s value if it will continue beyond the current period. These functions are analogous to

those defined for any firm in (1) and (2), with W u and W d denoting the continuing firm’s value

conditional on upward and downward capital adjustment, respectively.

W0 (k, b, εi; sl, µ) = πdp
[
π (k, b, εi) + θk (1− δ) k

]
+ (1− πd)W (k, b, εi; sl, µ) (14)

W (k, b, εi; sl, µ) = max{W u (k, b, εi; sl, µ) ,W d (k, b, εi; sl, µ)} (15)

The crucial identifying features of an unconstrained firm are: (i) its capital choices here

forward are independent of its financial position, thus (ii) it is indifferent about b′, as (iii) it

has the same marginal valuation of savings as a household. Any such firm’s b affects its value

only through current earnings defined in (13). As these are valued by p, we can express the

value of a type (k, b, ε) continuing unconstrained firm as W (k, 0, ε) − pb, and we can write the

beginning-of-period expected value as W0 (k, 0, ε)− pb. Given these observations, we have:

W u (k, b, εi; sl, µ) = pπ(k, b, εi) + p(1− δ)k (16)

+ max
k′≥(1−δ)k

[
−pk′ + β

Ns∑
m=1

Nε∑
j=1

πslmπijW0

(
k′, 0, εj ; sm, µ

′)]

W d (k, b, εi; sl, µ) = pπ(k, b, εi) + pθk(1− δ)k (17)

+ max
k′≤(1−δ)k

[
−pθkk′ + β

Ns∑
m=1

Nε∑
j=1

πslmπijW0

(
k′, 0, εj ; sm, µ

′)],
where (13) defines π(k, b, ε), and µ′ = Γ(s, µ).

We characterize the capital decision rule for an unconstrained firm by reference to two target

capital stocks that would solve the problems in (16) and (17), respectively, if the sign restrictions

on investment were removed. Specifically, define the upward target, k∗u, as the capital a firm
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would choose given a unit relative price of investment, and define the downward target, k∗d, as the

capital a firm would choose given a relative price at θk.

k∗u (εi) = arg max
k′

[
−pk′ + β

Ns∑
m=1

Nε∑
j=1

πslmπijw0

(
k′, εj ; sm,Γ(sl, µ)

)]
(18)

k∗d (εi) = arg max
k′

[
−pθkk′ + β

Ns∑
m=1

Nε∑
j=1

πslmπijw0

(
k′, εj ; sm,Γ(sl, µ)

)]
(19)

Appendix A establishes that the firm adopts a capital decision rule of the following (S, s) form.14

Kw (k, ε; s, µ) =


k∗u (ε; s, µ) if k < k∗u(ε;s,µ)

1−δ

(1− δ) k if k ∈
[
k∗u(ε;s,µ)

1−δ ,
k∗d(ε;s,µ)

1−δ

]
k∗d (ε; s, µ) if k > k∗d(ε;s,µ)

1−δ

(20)

By definition, unconstrained firms are indifferent between financial savings and dividends.

To guarantee they remain so, we assign each such firm a savings rule that implies zero probability

of a binding borrowing constraint in every possible future date and state. More specifically, we

assign a minimum savings policy exactly ensuring that, under all possible paths of (ε, s), the firm

will have suffi cient wealth to implement its optimal investment plan without borrowing more than

is permitted by (12). Provided an unconstrained firm maintains a level of debt not exceeding

the threshold defined by the minimum savings policy, it will remain indifferent to its financial

position. Thus, by construction, the savings rule we impose is an optimal policy.

We derive the minimum savings policy, Bw(k, ε; s, µ), recursively as the solution to (21) - (22).

Define B̃
(
Kw (k, ε; s, µ) , εj ; sm,Γ (s, µ)

)
as the largest debt level at which a firm entering next

period with capital Kw (k, ε; s, µ) can be unconstrained, given realized exogenous state (εj , sm).

Taking the minimum such B̃(·) over all possible (εj , sm), we identify the largest debt with which

14We use w superscripts on unconstrained decision rules to link them to the value function W .
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a firm can exit this period and be sure to remain unconstrained next period, Bw(k, ε; s, µ).15

Bw(k, ε; s, µ) = min
{εj |πij>0 and sm|πslm>0}

B̃
(
Kw (k, ε) , εj ; sm,Γ (s, µ)

)
, (21)

B̃(k, ε; s, µ) = zεF (k,N (k, ε))− ωN(k, ε) + qmin
{
Bw (k, ε; s, µ) , ζθkk

}
(22)

−J
(
Kw (k, ε)− (1− δ) k

)[
Kw (k, ε)− (1− δ) k

]
Equation 22 defines the beginning of period maximum debt level under which a firm can adopt

the unconstrained capital rule and debt not exceeding that identified by the minimum savings

policy without paying negative dividends, and hence satisfy the definition of an unconstrained

firm. Notice that B̃ is increasing in the firm’s current earnings, since these may be used to cover

outstanding debt. The minimum operator imposes the borrowing constraint; if the firm does not

have suffi cient collateral to borrow to Bw, it can still be unconstrained if it has suffi cient savings

to finance its investment. Finally, given the decision rule for capital and the minimum savings

policy, we retrieve unconstrained firms’dividend payments as:

Dw (k, b, ε, s, µ) = π(k, b, ε, s, µ)− J
(
Kw (k, ε)− (1− δ) k

)
[Kw (k, ε)− (1− δ) k] (23)

+qmin
{
Bw (k, ε, s, µ) , ζθkk

}
.

B. Decisions among constrained firms

We next consider the decisions of a continuing firm of type (k, b, ε) that has been constrained

until now. We begin by evaluating whether the firm has crossed the relevant wealth threshold

to become unconstrained. If the firm can adopt the capital rule Kw (k, ε) in (20) and a level of

debt not exceeding that identified by Bw(k, ε) in (21), while maintaining non-negative dividends,

then it achieves W in (15), and it becomes effectively indistinguishable from other unconstrained

firms entering the period with (k, ε).

V (k, b, ε; s, µ) = W (k, b, ε; s, µ) iffDw(k, b, ε; s, µ) ≥ 0 (24)

= V c (k, b, ε; s, µ) otherwise

Any firm that can permanently adopt the unconstrained firm decision rules will do so, since

15The assumption that ε, z and ζ are Markov Chains permits our proceeding as we do. A solution to (21) - (22)
requires that all shocks have finite support.
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V ≤ W . However, this is impossible when the inequality in the top line of (24) is not satisfied.

In that case, the firm is constrained and achieves value V c (k, b, ε; s, µ) determined below.

We approach a constrained firm’s problem as follows. First, given its (k, ε), we isolate a

cutoff debt level under which non-negative investment is possible without violating the borrowing

constraint in (12). The maximum b at which the firm can afford k′ = (1 − δ)k while avoiding

negative dividends is easily identified from (11) as b = qζθkk+ zεF (k,N (k, ε))−ωN (k, ε). If the

firm’s debt exceeds this cutoff, it must undertake downward capital adjustment, and its value is

given by V d (k, b, ε; s, µ) in (27) below; otherwise, it solves the full problem starting in equation

25. In either case, µ′ = Γ(s, µ) is taken as given, and V0 is defined by (9).

V c (k, b, ε; s, µ) = max{V u (k, b, ε; s, µ) , V d (k, b, ε; s, µ)} (25)

V u (k, b, ε; s, µ) = max
k′∈Ωu(k,b,ε)

β

Ns∑
m=1

Nε∑
j=1

πslmπijV0

(
k′, b′u(k′), εj ; sm, µ

′) (26)

subject to b′u(k′) =
1

q

(
−π (k, b, ε) + [k′ − (1− δ) k]

)

V d (k, b, ε; s, µ) = max
k′∈Ωd(k,b,ε)

β

Ns∑
m=1

Nε∑
j=1

πslmπijV0

(
k′, b′d(k

′), εj ; sm, µ
′) (27)

subject to b′d(k
′) =

1

q

(
−π (k, b, ε) + θk[k

′ − (1− δ) k]
)

The constraint sets for the upward and downward adjustment problem are, respectively:

Ωu(k, b, ε) = [(1− δ) k, ku(k, b, ε)]

Ωd(k, b, ε) = [0, max
{

0,min{(1− δ) k, kd(k, b, ε)
}

],

where ku and kd represent the maximum affordable capital stocks under each option,

ku(k, b, ε) ≡ (1− δ) k +
[
qζθkk + π (k, b, ε)

]
kd(k, b, ε) ≡ (1− δ) k +

1

θk

[
qζθkk + π (k, b, ε)

]
.

Let the capital stocks solving the conditional adjustment problems in (26) and (27) be denoted
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by k̂u (k, b, ε) and k̂d (k, b, ε). The constrained firm sets D = 0 and implements the following

decision rules for capital and debt.

Kc (k, b, ε; s, µ) =

 k̂u (k, b, ε) if V c (k, b, ε; s, µ) = V u (k, b, ε; s, µ)

k̂d (k, b, ε) if V c (k, b, ε; s, µ) = V d (k, b, ε; s, µ)
(28)

Bc (k, b, ε; s, µ) =
1

q

[
J
(
Kc (k, b, ε; s, µ)− (1− δ) k

)[
Kc (k, b, ε; s, µ) (29)

− (1− δ) k
]
− π (k, b, ε; s, µ)

]

V. Calibration and solution

The data on establishment-level investment dynamics are reported annually. As the me-

chanics of the reallocation of capital across firms are at the core of our model, we reproduce

salient empirical regularities from this data. Accordingly, we set the length of a period to one

year. We assume that the representative household’s period utility is the result of indivisible la-

bor (Rogerson (1988)): u(c, L) = log c+ϕL. The firm-level production function is Cobb-Douglas:

zεF (k, n) = zεkαnν . The initial capital stock of each entering firm is a fixed χ fraction of the typi-

cal stock held across all firms in the long-run of our full economy; that is, k0 = χ
∫
kµ̃(d [k × b× ε]),

where µ̃ represents the steady-state distribution therein.

A. Aggregate data

We determine the values of β, ν, δ, α, and ϕ using moments from the aggregate data as

follows. First, we set the household discount factor, β, to imply an average real interest rate

of 4 percent, consistent with recent findings by Gomme, Ravikumar and Rupert (2011). Next,

the production parameter ν is set to yield an average labor share of income at 0.60 (Cooley and

Prescott (1995)). The depreciation rate, δ, is taken to imply an average investment-to-capital ratio

of roughly 0.069, which corresponds to the average value for the private capital stock between 1954

and 2002 in the U.S. Fixed Asset Tables, controlling for growth. Given this value, we determine

capital’s share, α, so that our model matches the average private capital-to-output ratio over the

same period, at 2.3, and we set the parameter governing the preference for leisure, ϕ, to imply an

average of one-third of available time is spent in market work.

Exact aggregation obtains in the version of our model without real or financial frictions; in
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particular, it has an aggregate production function. We use this reference model to estimate

an exogenous stochastic process for aggregate productivity. We begin by assuming a continuous

shock following a mean zero AR(1) process in logs: log z′ = ρz log z + η′z with η
′
z ∼ N

(
0, σ2

ηz

)
.

Next, we estimate the values of ρz and σηz from Solow residuals measured using data on real

U.S. GDP and private capital, together with the total employment hours series constructed by

Cociuba, Prescott and Ueberfeldt (2012) from CPS household survey data, over the years 1959-

2012, and we discretize the resulting productivity process using a grid with 3 shock realizations

(Nz = 3) to obtain (zf ) and
(
πzfg

)
.

We will see below that there are no perceptible changes in the endogenous component of

aggregate total factor productivity in our full model when aggregate fluctuations are driven by

exogenous shocks to TFP. Such changes arise only with fluctuations in the credit variable, ζ. We

specify ζ as a 2-state Markov chain with realizations ζo and ζ l and transition matrix:

Πζ =

 po 1− po
1− pl pl

 .
The realization ζo corresponds to ordinary borrowing conditions, while ζ l is a low realization

corresponding to crisis conditions. In the transition matrix, po is the probability of continuing in

ordinary borrowing conditions, Pr{ζ ′ = ζo|ζ = ζo}, while 1− pl is the probability of escape from

crisis conditions, Pr{ζ ′ = ζo|ζ = ζ l}.

We calibrate our model to reproduce the average aggregate indebtedness of firms in the U.S.

economy. We assume ζ = ζo in calibrating our steady state, and we choose ζo to imply a steady

state debt-to-assets ratio at 0.372, matching the average for nonfarm nonfinancial businesses over

1954-2006 in the Flow of Funds. Next, we choose ζ l so that, when subjected to a credit shock

alone, our model delivers a 26 percent drop in debt. This choice is guided by evidence on the

reductions in syndicated lending and commercial and industrial loans over the 2007 U.S. recession,

which we discuss below in section VI.

We select the parameters of the Πζ matrix using evidence on banking crises from Reinhart

and Rogoff (2009). Their definition of a banking crisis includes episodes where bank runs lead to

the closure or public takeover of financial institutions as well as those without bank runs where the

closure, merging, takeover or government bailout of one important financial institution is followed

by similar outcomes for others. They document 13 crises in the U.S. since 1800 and the share of
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years spent in crises at 13 percent, which together imply an average crisis duration of 2.09 years.

Given our use of postwar targets to calibrate the remaining parameters of our model, the more

appropriate statistics for our purposes are those from the period 1945-2008, wherein the U.S. has

had two banking crises (the 1989 savings and loan crisis and the 2007 subprime lending crisis).16

Unfortunately, it is not possible to determine the average length of a U.S. crisis from this sample

period, without knowing the ending date of the most recent crisis. Given this diffi culty, alongside

Reinhart and Rogoff’s argument that the incidence and number of crises is similar across the

extensive set of countries they consider, we focus instead on their data for advanced economies.

The average number of banking crises across advanced economies over 1945 - 2008 was 1.4, while

the share of years spent in crisis was 7 percent. Combining these observations, we set po = 0.9765

and 1− pl = 0.3125 so that the average duration of a credit crisis in our model is 3.2 years, and

the economy spends 7 percent of time in the crisis state.

B. Firm-level data

We set the exit rate, πd, so that 10 percent of firms enter and exit the economy each year.

Next, we set the fraction of the steady-state aggregate capital stock held by each entering firm,

χ, at 0.10 so that, in an average date, each entering firm begins with an initial capital that is one-

tenth the size of the aggregate stock. If we had assumed constant returns to scale in production,

this would imply an employment size of entering firms averaging one-tenth the size of the typical

firm in our economy, matching the Davis and Haltiwanger (1992) data.17

The costly reversibility of investment and the dispersion of firm-level total factor productivity

are calibrated to reproduce microeconomic evidence on establishment-level investment dynamics.

We begin by assuming that firm-specific productivity follows an AR(1) log-normal process, log ε′ =

ρε log ε + η′, with η′ ∼ N
(

0, σ2
ηε

)
. Next we choose θk, ρε and σηε jointly so that our steady

state reproduces three aspects of establishment-level investment data documented by Cooper and

Haltiwanger (2006) based on a 17-year sample drawn from the Longitudinal Research Database.

These targets are (i) the average standard deviation of investment rates (i/k): 0.337, (ii) the

16These observations are consistent with findings by Bianchi and Mendoza (2012); they document a frequency of
financial crisis at 3 percent, consistent with three financial crisis in the U.S. over the past hundred years. Mendoza
(2010) estimates a crisis frequency of 3.6 percent across emerging economies since 1980.
17Our model has returns to scale at 0.87, so the relative employment size of a new firm is 21 percent. To match

Davis and Haltiwanger’s (1992) relative size of an entrant, we would have to assume an entrant has 3.3 percent
the capital of the typical firm. In that case, firms would take longer to mature, amplifying the effects of financial
frictions and financial shocks.
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average serial correlation of investment rates: 0.058, and (iii) the frequency of lumpy investments:

0.186, which is the fraction of establishment-year observations with a positive investment spike

(i/k > 0.20). While not a target in the calibration, we also closely match the average mean

investment rate from the Cooper and Haltiwanger study, 0.122; our counterpart is 0.11. In

implementation, for each postulated ρε and σηε , we discretize firms’ log-normal productivity

process using 7 values (Nε = 7) to obtain {εi}Nεi=1 and (πij)
Nε
i,j=1.

While our model has life-cycle aspects affecting firms’ investments, the Cooper and Halti-

wanger (2006) dataset includes only large manufacturing establishments that remain in operation

throughout their sample period. Thus, for this part of our calibration, we must generate a com-

parable model dataset. We do so by simulating a large sample of unconstrained firms over 30

years, retaining only those firms that survive throughout, and discarding the investment rates

from early years. This restricts attention to firms whose investment decisions are unaffected by

their borrowing limits and eliminates additional life-cycle aspects arising from irreversibility.

The idiosyncratic shock process we calibrate has a persistence of 0.659 and a standard de-

viation of innovations of 0.118.18 As firms in the model sample are unaffected by borrowing

constraints, their investments would respond immediately to changes in their total factor produc-

tivities in the absence of costs of uninstalling capital. This implies a negative autocorrelation

in investment rates, since capital is determined by lagged investment. The costly reversibility

of capital is then essential in reproducing the investment moments reported above, and we set

θk = 0.954 to reproduce the serial correlation of investment rates in the data.19

At 0.046, our calibrated irreversibility might appear inconsequential. However, in its absence,

firm-level capital reallocation changes dramatically. If we maintained our idiosyncratic shock

process while setting θk = 1, the mean and standard deviation of firm investment rates would

rise by roughly 150 percent (reaching 0.29 and 0.83, respectively), while the serial correlation

would fall from the observed 0.058 to −0.15, and the frequency of investment spikes would nearly

18Moll (2012) and Midrigan and Xu (2010) stress that the persistence of idiosyncratic shocks is important for the
implications of borrowing constraints. This may be more so in settings where productivities are known in advance,
borrowing limits depend on future capital, and firms face no other frictions hindering reallocation. Since our model
generates a natural firm life-cycle and differences in size distinct from productivity differences, we need not rely as
heavily on ρε to hit our micro-investment targets as would otherwise be the case.
19At roughly 5 percent, our irreversibility is far lower than the 40+ percent friction Ramey and Shapiro (2001) infer

from aerospace plants’capital resale activities, low relative to the roughly 34 percent estimated by Bloom (2009),
and high relative to the 2.5 percent estimated by Cooper and Haltiwanger (2006). Any such parameter inference
is sensitive to the model through which it is obtained; more important than the raw number is its consequence in
observable firm-level outcomes. Our firms’investment decisions are very responsive to the real friction, so only a
modest friction is needed in our calibration.
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double (0.31). Alternatively, if we reset σηε to maintain the observed standard deviation of
i
k ,

the resulting σηε would be 0.483 times the calibrated value, the frequency of investment spikes

would still be overstated (0.32), and serial correlation would again be negative (−0.16).

Ideally, a heterogenous firm setting devised to explore the implications of credit shocks should

be consistent with not only microeconomic evidence on real reallocation but also micro-level

evidence on firms’financing decisions. Because it implies firm life cycle dynamics, one natural

target for our model is the relation between firm size and leverage. In Appendix C, we examine

a sample of nonfinancial firms from the Compustat very similar to that in Bates, Kahle and Stulz

(2009), and we find the average cross-sectional correlation of size (book assets) with leverage (the

ratio of total debt to book assets) over 1954-2011 is 0.022. This finding of a modest positive

relation is consistent with empirical evidence presented by Fama and French (2002) and Rajan and

Zingales (1995); examining regressions of leverage on size, Fama and French identify coeffi cients

ranging 0.02 to 0.04, while Rajan and Zingales reports a 0.03 coeffi cient. A second target for our

model is the cross-sectional variation in firms’cash-to-asset ratios; the average standard deviation

in cash ratios from the Compustat over 1954 - 2011 is 0.161.

As in the Compustat data, we identify size in our model as the total value of a firm’s capital

and financial savings (|b < 0|) less its debt (b > 0), leverage as the ratio of a firm’s debt to

its size, and the cash ratio as the ratio of financial savings to size. If we draw a large random

sample of firms from the stationary distribution of the model we have described to this point,

we obtain a correlation between size and leverage at roughly −0.2. Because we have no theory

of firm ownership, all leverage in our model is associated with investment loans. By contrast,

the data reflects not only borrowing for investment activities, but also other activities such as

restructuring and mergers and acquisitions; Ivashina and Scharfstein (2010) report that two-thirds

of syndicated loans in 2007 were associated with these other activities. Our model is not designed

to explain such activities; however, with a simple modification, it can be made to accommodate

their implications.

Alongside the firms described above, we achieve consistency with the Compustat observations

by introducing an additional group of firms that do not face collateral constraints. We will refer

to these as no-constraint firms. Whereas unconstrained firms are firms that have accumulated

suffi cient wealth over time to outgrow financial frictions, our no-constraint firms are unaffected

by borrowing constraints throughout their entire lifetimes. Each period, they optimally adopt
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the capital policies of unconstrained firms, setting k′ = Kw(k, ε; s, µ). However, because they are

impervious to financial frictions, they need not adopt the minimum savings policy in (21) - (22).

For simplicity, we assign our no-constraint firms a debt policy implying their leverage and

capital are linearly related; b′ = αe(k
′)2. Next, we assume that, of the new firms entering the

economy each period, fraction ωe are firms of this type. We choose αe and ωe so that a large

random sample drawn from our stationary distribution reproduces the Compustat size-leverage

correlation and standard deviation of cash ratios.

Table 1 lists the parameter set obtained from our calibration. Given ordinary credit condi-

tions, note that these parameters imply a moderate degree of financial frictions, with firms able

to take on debt up to 138 percent of the value of their tangible assets. Also note that firm-level

shocks are more volatile and less persistent than aggregate shocks.

TABLE 1. PARAMETER VALUES

Panel A

β ν δ α ϕ χ θk ωe αe

0.960 0.600 0.065 0.270 2.150 0.100 0.954 0.291 0.225

Panel B

πd ρε σηε ρz σηz ζo ζ l po pl

0.100 0.659 0.118 0.909 0.014 1.380 0.500 0.977 0.688

NOTE.—In panel A, β is discount factor, ν is labor share, δ is depreciation rate, ϕ is leisure preference

parameter, χ is capital per new firm relative to aggregate, θk is degree of reversibility, ωe is fraction

of firms without collateral constraints, and αe is ratio of leverage to capital among them. In panel

B, πd is exit rate, ρε and σηε are persistence and innovation volatility of firm productivity shock, ρz

and σηz are persistence and innovation volatility of aggregate productivity shock, ζo is ordinary (and

steady state) credit value, ζl is low value corresponding to a crisis, po is probability of continuing

ordinary credit conditions, and pl is probability of crisis next period conditional on current crisis.

Our calibrated model gives rise to a stationary distribution of firms over (k, b, ε) wherein

roughly 9 percent of firms are unconstrained and 62 percent are constrained (using the definition

from section IV), whereas the fraction of firms facing a currently binding borrowing limit is 17

percent. While we have not targeted information on aggregate cash holdings in the calibration,

the aggregate cash-to-asset ratio in our model’s steady state (0.12) is close to the Compustat
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ratio from 2006 (0.102). Bates, Kahle and Stulz (2009) have stressed that cash ratios rose

substantially between 1980 and the late 2000s. Indeed, relative to the postwar average (0.082),

they were unusually high as the U.S. entered the recent financial crisis. When we examine the

effects of a credit shock below, the firm distribution in the first date will be the steady state

distribution. Thus, for comparability with the U.S. experience, it is important that our steady

state is consistent with the high cash ratio preceding the 2007 recession.

C. Numerical overview

The numerical algorithm we use to solve our model builds on that described in Khan and

Thomas (2003, 2008) using the analysis from section IV. However, the discrete choices and three-

dimensional heterogeneity arising here from the presence of investment irreversibility and collat-

eralized borrowing, alongside the firm-level productivity shocks, necessitate a nonlinear solution

method that is more involved than that used in these papers.

Our model includes a distribution of firms over capital, debt and idiosyncratic productivity,

(k, b, ε). We compute equilibrium by solving the problems of firms in a setting where prices are

consistent with market-clearing. Because the distribution in the model’s aggregate state is a

high-dimensional object, we approximate it with the first-moment of the distribution of capital

and two dummy variables reflecting credit conditions in recent dates, applying the algorithm of

Krusell and Smith (1998).20 Specifically, we assume that agents perceive (s,m, ϑ1, ϑ2) as the

economy’s aggregate state instead of (s, µ). The variable m represents the unconditional mean of

the distribution of capital across firms, while ϑ1 and ϑ2 are lagged crisis dummies. ϑ1 takes the

value 1 if the economy was in a credit crisis in the previous period (if ζt−1 = ζ l) and 0 otherwise.

Similarly, ϑ2 = 1 in the event of a credit crises two periods in the past (if ζt−2 = ζ l).

The solution method is iterative. In each iteration, there are three steps. First, firms’value

functions are solved in an inner loop using existing forecasting rules for m′ and p. We interpolate

these functions using a set of knots in individual and aggregate states. We do not restrict current

or future firm choices to these points; we use multivariate piecewise polynomial cubic splines to

interpolate the value function off knot points. Second, an outer loop solves equilibrium quantities

and relative prices over a 10,000 period simulation, date-by-date, using the forecasting rule for m′

20We solve the model using MPI with 128 computational cores in a Beowulf Cluster. Parallel methods are
required, despite our use of the Krusell-Smith algorithm, because the dependency of constrained firms’decisions on
their productivity, debt and capital implies a computationally intensive numerical algorithm.

25



and firms’value functions solved in the inner loop. Each period of the simulation determines the

equilibrium p using the actual distribution of firms in place at the start of the period. The third

step updates forecasting rules using the simulation. Appendix B describes our numerical method

in greater detail, presents forecasting rules and discusses accuracy.

VI. Results

A. Steady state

Figure 1 overviews the stationary distribution of firms in our model, displaying the distribu-

tion of firms over capital and debt-to-capital levels at the median productivity

NOTE.—Capital increases right to left. Debt/capital ratio increases front to back; negative values

reflect financial savings.

Figure 1 effectively contains three distributions. The first, in the foreground, has a curved

shape reflecting an inverse relation between firms’capital stocks and their financial savings. This
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corresponds to older, wealthier firms that are unconstrained and following the minimum savings

policy from section IV.21 Such firms have higher capital or higher savings relative to constrained

firms, which are the bulk of firms distributed near the back of the figure. Finally, the distribu-

tion depicted with dashed lines near the back corresponds to no-constraint firms that never face

borrowing limits; these firms select the same capitals as unconstrained firms and, by assumption,

they adopt debt/capital levels in proportion to their capital stocks.

While not shown here, the stationary distributions over (k, b/k) at other productivity levels

are similar to Figure 1. The 10 percent of firms entering the economy each period are dispersed

over ε according to the ergodic distribution of productivities. These firms enter with zero debt

and low initial capital (0.15); see the spike near the left edge of Figure 1. After its first date in

production, a new firm starts taking on debt to raise its capital. Absent collateral constraints, it

would immediately take on a large, temporary debt to jump to the stock selected by unconstrained

firms with the same current productivity. Here, however, firms with little collateral have limited

ability to borrow, so their capital accumulation is more gradual. Young firms slowly move into

higher ranges of k and b/k as they age, steadily raising their capital while maintaining a roughly

constant borrowing rate typically below the maximum permitted. Those surviving long enough

eventually adopt the unconstrained capital choices consistent with their current ε while beginning

to reduce debt. Those surviving longer will, at some point, attain capital and savings suffi cient

to shield all future investments from the consequences of borrowing limits; at that point, they

join the distribution of unconstrained firms in the foreground.

The life-cycle aspects of our model may be seen from Figure 2, which displays the average

capital and debt choices for a cohort of (initially) 50, 000 firms as they age. Note that the typical

firm raises capital and debt over its first five periods of life. Thereafter, starting in period 7,

it begins to reduce its debt and finances the remaining rise in its capital stock out of earnings.

By period 16, the typical firm has become a net saver, and thereafter joins the distribution of

permanently unconstrained firms.22

To be clear, Figure 2 does not imply that the model predicts a negative relation between

size and leverage. Recall that this figure is not drawn from a balanced panel of firms; given the

constant exit rate, there are fewer firms in the right half of the figure than there are on the left

21Unconstrained firms that have had a run of low productivities leading to low current capitals have amassed
suffi cient financial savings through retained previous earnings to satisfy (21) - (22).
22The cohort’s average net debt in Figure 2 does not become negative until period 18 due to no-constraint firms,

the group of firms without borrowing limits defined above.
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where leverage is roughly constant. In fact, when we draw a large random sample of firms from

our stationary distribution, the sample correlation between size and leverage is 0.022. This is by

design in that we have calibrated the number of no-constraint firms and their linear leverage rule

to match the empirical size-leverage relation and cross-sectional volatility of cash ratios.

NOTE..—Cohort average capital and net debt are taken from an unbalanced panel of firms born at

date 1. Net debt is defined as debt less financial savings.

While relatively simple in its microeconomic elements, our existing model is consistent with

various aspects of firm-level behavior observed in the data. For example, our unconditional

stationary firm size distribution is right-skewed, firm employment growth is negatively correlated

with age (Dunne, Roberts and Samuelson (1989)), and larger and older firms pay more dividends

(Fama and French (2001)). Moreover, recall that the model is calibrated to reproduce aspects of

firm behavior that are crucial in affecting the core misallocation mechanism therein; specifically,

it reproduces the empirical variability and autocorrelation of microeconomic investment rates,

alongside the frequency of spikes, and it closely matches the mean investment rate.

For a large fraction of our economy’s firms, financial considerations interfere with the optimal

investment responses to information about the future marginal product of capital conveyed by
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current productivity. Even in ordinary times, this generates misallocation. One indication of

this is the fact that the average capital stock among unconstrained firms in our model’s stationary

distribution is 1.98, while the average stock of constrained firms is 1.17. Despite the presence

of 0.291 no-constraint firms that accumulate capital rapidly in youth, the typical old firm in our

economy has much more capital than the typical young firm. This reflects capital misallocation,

since each age group draws from the same productivity distribution. Absent financial frictions,

steady state output would be 2.3 percent higher, and measured TFP would rise by 0.6 percent.23

NOTE.—Top panel is period-by-period mean expected discounted marginal value of capital for an

unbalanced panel of firms born in period 1. Bottom panel is the coeffi cient of variation in expected

return from the same sample.

Old firms in our economy do not carry excess capital; the ineffi ciency lies in the fact that

young, small firms carry too little. This is clarified by Figure 3, which again examines a cohort

of (initially) 50, 000 firms, this time focusing on the expected discounted return to investment for

the cohort as it ages over time. Absent real and financial frictions, firms would always select

investment to equate this return to the unit purchase price of investment goods, so the mean

investment return across firms in the top panel of our figure would be constant at 1, and the

23 If we omited no-constraint firms from our model, collateral constraints would have larger steady state effects,
reducing output by 4 percent and TFP by 1 percent. We discuss steady state capital choices in Appendix D.
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coeffi cient of variation in this return in the bottom panel would always be 0. By contrast, in our

model, the mean expected discounted return to investment is 1.12 for a cohort as it ends its first

year of production, and the coeffi cient of variation in this return is 3.85. Thereafter, over each

subsequent year of life, we see ever less dispersion in the return to investment across surviving

members of the cohort, and the mean expected return falling towards 1.

After a certain age, surviving members of the cohort have suffi cient assets that financial

frictions no longer affect their investment decisions. Thus, we see the mean expected investment

return for the cohort ultimately reach 1. Even then, there remains some variation in the expected

return, given the implications of irreversibility.

B. Business Cycles

We begin to examine business cycle results by first considering the implications of credit

shocks in our economy’s typical business cycle. Table 2 presents moments derived from an HP-

filtered 10, 000 period simulation of our full model driven by aggregate productivity shocks and

credit shocks. Table 3 presents the same moments when aggregate productivity shocks are the

only source of aggregate fluctuations.

Comparing the two tables, we see that credit shocks reduce the average levels of output,

capital, and consumption somewhat. In terms of second moments, these shocks raise overall

output volatility, as well as the relative volatilities of consumption, investment and hours worked,

while they weaken contemporaneous correlations with output.

TABLE 2. BUSINESS CYCLES IN THE FULL ECONOMY

x = Y C I N K r

mean(x) 0.578 0.485 0.094 0.333 1.323 0.042

σx/σY (2.046) 0.514 4.106 0.599 0.517 0.467

corr(x, Y ) 1.000 0.880 0.945 0.914 0.094 0.657

NOTE.— Row 1 lists means of GDP, consumption, investment, hours worked, capital and the real

interest rate from a 10,000 period simulation of our full model with both z and ζ shocks. Rows 2

and 3 are relative standard deviations and contemporaneous correlations with GDP for HP-filtered

simulation data (smoothing parameter 100); HP-filtered GDP volatility is listed in parentheses.
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TABLE 3. BUSINESS CYCLES WITHOUT CREDIT SHOCKS

x = Y C I N K r

mean(x) 0.583 0.488 0.096 0.334 1.354 0.042

σx/σY (1.997) 0.503 3.860 0.562 0.485 0.453

corr(x, Y ) 1.000 0.931 0.967 0.945 0.073 0.671

NOTE.—Results from the model without ζ shocks. Row 1 lists simulation means; rows 2 and 3 report

relative standard deviations and contemporaneous correlations with GDP for HP-filtered simulation

data with smoothing parameter 100; HP-filtered GDP volatility is listed in parentheses.

We emphasize that the differences across Tables 2 and 3 would be more pronounced if credit

shocks happened more often.24 Recall that our full model economy is calibrated to reproduce the

observation that credit crises occur in only 7 percent of years among advanced economies. The

fact that differences are even discernible in these moments tables indicates that, when they occur,

credit shocks have large effects on the real economy. This will be confirmed when we consider the

responses following a credit shock below in subsection C. There, we will see both a large recession

(hence the greater volatility in Table 2), and a gradual unraveling of real economic activity led

by sharp declines in investment and employment.

TABLE 4. BUSINESS CYCLES WITHOUT REAL SHOCKS

x = Y C I N K r

mean(x) 0.577 0.484 0.093 0.333 1.319 0.042

σx/σY (0.434) 0.625 7.000 1.145 0.907 0.644

corr(x, Y ) 1.000 0.056 0.880 0.843 0.274 0.501

NOTE.—Results from the model with only ζ shocks (no z variation). Row 1 lists simulation means;

rows 2 and 3 report relative standard deviations and contemporaneous correlations with GDP for

HP-filtered simulation data with smoothing parameter 100.

Table 4 presents the business cycle moments for a 10, 000 period simulation of our model

driven only by credit shocks. These foreshadow some important differences in our economy’s

response to a credit shock versus a TFP shock. Because credit shocks happen rarely, HP-filtered

24The similarities here are reminiscent of Mendoza (2010), which finds that business cycle moments are largely
unaffected by a collateral constraint in a small open production economy.
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output volatility is very low over this simulation. Nonetheless, comparing Table 4 with Tables 2

and 3, note the greater relative volatility in investment and hours worked, these series’reduced

contemporaneous correlations with GDP, and the essentially acyclical consumption series. These

differences will be explained below when we compare impulse responses following a negative TFP

shock (Figure 4) with those following a credit shock (Figures 6 and 9).

Having briefly considered how the business cycle moments change when one or the other shock

is eliminated from our economy, we emphasize two further points. First, the second moments

from our full model economy in Table 2 are broadly similar to those from a typical real business

cycle model. Output volatility is roughly 2 percent, and consumption is about half as volatile

as output, while investment is roughly four times as volatile. We also see the customary strong

contemporaneous correlations with output in consumption, investment, and hours worked. While

the usual diffi culties of excessive investment volatility and weak hours volatility are a bit more

pronounced relative to some real business cycle models, these distinctions come from our differing

returns to scale in production rather than either friction we mean to study; the same features are

present when we strip both frictions away (see Table E3 in Appendix E).

Second, despite the differences noted above, the second moments across Tables 2 and 3 are

similar on the whole. So long as the credit shocks in our model are calibrated to reproduce the

frequency and length of banking crises observed in advanced countries, real shocks are, on average,

dominant in driving aggregate fluctuations. Thus, our model naturally delivers plausible business

cycles, because its responses to real shocks are very similar to those in a frictionless business cycle

model. This observation is reinforced by Figure 4, which presents our full model economy’s

impulse responses following a persistent negative shock to the exogenous component of total

factor productivity.

The close match between the exogenous and measured TFP series in the bottom right panel

reveals that a persistent technology shock has no perceptible implications for the endogenous com-

ponent of aggregate productivity. As a result, the responses in aggregate output, consumption,

employment and investment closely resemble those from an economy without real or financial

frictions. Just as in a frictionless business cycle model, there are immediate declines in all four

series. Further, aside from the customary U-shaped consumption response, we see the largest

declines at the impact of the shock, with each series thereafter reverting toward its long-run level.

Note also that the largest declines in GDP and investment are roughly 3.2 and 11.8 percent,
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respectively, while the fall in hours worked is half that in GDP.

NOTE.—Response to 2.18 percent productivity shock with persistence ρz. Y-axes measure percent

deviation from simulation means.

The 2007Q4 - 2009Q2 U.S. recession exhibits several notable differences relative to the reces-

sion following a technology shock in our model (Figure 4) or the canonical equilibrium business

cycle model. Figure 5 reports the movements in detrended GDP, consumption, investment, em-

ployment hours and measured TFP, plotting each series’deviations relative to their 2007Q4 levels.

We defer discussion of the data beyond 2009Q2 for now and focus here on the economic downturn.

Starting at 2007Q4, the initial decline in GDP was small relative to its ultimate drop. Con-

sumption actually rose by 0.6 percent, and stayed above its initial (detrended) level until 2008Q4.

Moreover, the early declines in investment were modest relative to what came later. While total

private investment fell immediately, this was initially driven by housing. Non-residential invest-

ment did not begin to fall until 2008Q3, at which point it began to drop off sharply relative to

the more gradual declines in GDP and consumption. Measured TFP fell until the first quarter

of 2009, though its greatest declines happened starting in 2008Q3. The greatest decline in hours
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worked came even later. As of 2009Q2, GDP was roughly 5.6 percent below its initial level, total

hours had fallen by 6 percent, and investment had fallen by 19 - 20.6 percent.25 Meantime, the

drop in measured TFP was only 2.18 percent, precisely the size of the shock depicted in Figure 4.

NOTE.—Real GDP, consumption, private and business fixed investment series from BEA GDP Ta-

bles. Consumption is nondurable goods and services; private investment is business fixed investment,

residential investment and consumer durables. Total hours is civilian and military hours worked by

noninstitutional population aged 16 to 64 from Cociuba et. al (2012). Measured TFP is a direct Solow

Residual calculation using the capital and labor shares to which our model is calibrated, with private

capital taken from BEA Fixed Assets Tables. All series are in logs, detrended using the Hodrick-

Prescott filter with weight 1600, and plotted as percentage point deviations from 2007Q4 values; the

filter is constructed using data from 1954Q1 - 2012Q4.

The recent U.S. economic downturn presents several challenges for any equilibrium business

cycle model driven by aggregate productivity shocks alone. First, it shows an initial rise in

consumption where the model would predict a clear decline. Next, the ultimate losses in GDP,

25Ohanian (2010) presents evidence that the magnitudes of these declines in investment and hours are dramatic
in comparison with those seen in previous postwar U.S. recessions, as well as other G7 countries’2007-9 recesssions.
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employment and investment by the end of the recession are greater than a productivity shock

would imply, despite the same drop in measured TFP. Third, the trough dates differ across

series, whereas a technology-shock-driven model would always predict the greatest fall in GDP,

hours worked, investment and TFP at a common date. Fourth, while not shown in Figure 5,

there was a very sharp reduction in debt over this period that would be impossible to reproduce

with any plausible-sized technology shock. We discuss this below in subsection C.

C. Credit Crisis

Clearly, the challenges regarding the latest U.S. recession apply not only to a standard busi-

ness cycle model but also to ours, so long as it is driven by a shock to exogenous productivity.

Here we consider what happens when financial frictions become unusually severe. Whereas a

standard business cycle model is unaffected by such events, this is not the case in our setting

where firms have different access to, and need for, credit.

We begin by discussing the evidence for an exogenous shock to the availability of credit that,

in our model, corresponds to a drop in ζ. As is now well understood, it is hard to conclusively

establish that the U.S. experienced an exogenous reduction in lending to businesses in the late

2000s. In a very early exploration of the matter, Chari et al. (2008) argued there was little

evidence that the financial crisis had affected lending to nonfinancial firms. Examining the Flow

of Funds, they found the stock of commercial and industrial loans across regulated banks had

actually risen as of the third quarter of 2008. They also argued that, in the aggregate, business

fixed investment is less than firms’revenues net of labor costs; that is, the mean firm can self-

finance investment. It is worth noting that our calibrated model is consistent with this observation

in the aggregate data. Nonetheless, borrowing limits bind for some smaller firms, and this leads

to insuffi cient capital in those firms, reducing both aggregate TFP and GDP.

Ivashina and Scharfstein (2010) re-examine the issue of lending over the financial crisis.

They study Reuters DealScan data on syndicated loans, which captures new lending to large

corporations. While these loans originate with banks, the pool of lenders, which includes non-

bank financial institutions, is larger. Moreover, the data on syndicated lending covers new loans,

as opposed to the stock of outstanding debt that is reported in the Flow of Funds. Ivashina and

Scharfstein find strong evidence of a reduction in lending around the start of the 2007 recession.

Between 2007 and 2008, they report that total syndicated lending fell 54 percent, while loans used
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to fund investment in equipment and structures fell 48 percent.

Koepke and Thomson (2011) examine loans from FDIC-insured commercial banks and savings

institutions. They point out that the stock of these loans, an important source of borrowing for

small and medium-sized businesses, fell 18.7 percent between 2008Q4 and 2009Q4 and fell yet

further through 2010Q2, when they were 19.1 percent below their 2007Q4 level. Re-examining

commercial and industrial loans at commercial banks deflated by the GDP deflator series, we find

that real lending continued falling through the fourth quarter of 2011, when it was 26 percent

below its level from the end of 2008. Since then, the series has gradually risen, but it was still

more than 11 percent below the 2008Q4 level as of the first quarter of 2013.

While these investigations provide evidence of a reduction in lending to nonfinancial firms,

they do not establish whether this represents an exogenous reduction in credit or instead an

equilibrium response to reductions in business fixed investment. Almeida et al. (2009) and

Duchin et al. (2010) provide support for a credit shock interpretation. Controlling for firm

characteristics using a matching estimator, Almeida et al. study the investment behavior of firms

that, given their existing loan maturity structures, needed to refinance a substantial fraction of

their long-term debt over the year following August 2007. They find that investment spending

among such firms fell by one-third. By contrast, other firms with similar characteristics, but

without a large refinancing in the period following the start of the financial crisis, showed no

investment reduction. Since the fraction of long-term debt maturing after August 2007 was likely

exogenous to the financial crisis, this suggests an exogenous reduction in the supply of credit.

Similarly, Duchin et al. (2010) compare the behavior of firms that were carrying more cash prior

to the onset of the crisis with that of firms carrying less cash. Using a difference-in-difference

approach, they find that firms with less liquid assets before the financial crisis exhibited a larger

reduction in investment.

Figure 6 depicts our model economy’s response to a credit crisis, absent any exogenous TFP

shock. It is the response to an 88 percentage point drop in the value of firms’collateral from ζo

to ζ l, which we will see below implies an eventual 26 percent reduction in debt. This reduction is

consistent with the actual declines in various series reflecting lending discussed above; it matches

our measure of the ultimate fall in commercial and industrial loans, and it is substantially smaller

than the fall in syndicated investment loans reported by Ivashina and Scharfstein (2010). From

the first date of the credit shock onwards, households and firms expect a return to normal financial
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conditions with probability 1−pl consistent with our calibrated Πζ matrix. Thus, when the shock

occurs in period 1, they expect it will persist for 3.2 years. For now, we focus exclusively on

the downturn following the credit shock, thus omitting recovery from this figure. We show in

Appendix F that there is little interaction if the credit shock we examine here is compounded by

a negative shock to the exogenous component of TFP.

NOTE.—Response to a drop in the credit variable from ζo to ζl. Expectations are consistent with the

calibrated shock process; however the credit variable is maintained at its crisis level through period

25. Y-axes measure percentage deviations from simulation means.

Although the distribution of capital is predetermined when the financial shock hits in year

1, the top left panel of Figure 6 reveals that aggregate production immediately falls by about

1.5 percent relative to its simulated mean in normal financial times. This is a direct consequence

of the 2.5 percent fall in the labor input (top right panel), which is, in turn, a reaction to the

reduced expected return to investment. With the sudden reduction in credit, there is a drop in

the fraction of firms that are financially unconstrained and a sharp rise in the fraction of firms

facing currently binding borrowing limits. Underlying these changes, young firms are now more
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hindered in their investment activities relative to the pre-shock economy, and thus will take longer

to outgrow financial frictions and begin producing at a scale consistent with their productivities.

If these financial conditions persisted permanently, the resulting stationary distribution would

have 43 percent of firms constrained in their current capital adjustments, whereas this fraction is

17 percent in ordinary financial times.

Unlike the response following a negative productivity shock, consumption does not initially

fall when the credit shock hits our economy. Anticipating a more distorted distribution of

production over coming years, and thus unusually low total factor productivity (in the lower right

panel), the representative household in our economy expects a lowered return to saving.26 This

leads to an almost 1 percent rise in consumption at the impact of the shock and a fall in hours

worked. The fall in investment (at lower left) does not support consumption for long though;

consumption falls to its pre-shock level by date 3, then steadily declines over 8 more years before

it levels off. Elsewhere, labor falls at the impact of the shock as described above. Thereafter,

given increased misallocation of capital at the start of date 2, alongside reductions in total capital,

the marginal product of labor drops, yielding further large reductions in hours worked. By year

3, the series is 3.7 percent below its pre-shock level, and it does not rise to the level consistent

with the new financial setting until around period 15. This long adjustment period is a reflection

of the time it takes for the capital distribution to settle, as may be inferred from the measured

TFP response in the lower right panel. The entire reduction in measured TFP is an endogenous

response to a growing misallocation of productive resources.

Figure 7 shows how the credit shock distorts the allocation of production in our economy.

The top panel plots the distribution of firms over capital and productivity in place in date 1 when

the shock occurs. The lower panel is the same distribution at the start of date 2.27 Comparing

the two panels, we see increased dispersion within just one period. The mass of firms with capital

stocks between 1.5 and 3 in the top panel is reduced, with much of that mass pushed into lower

regions of capital by date 2. In other words, the shock creates fewer medium-sized firms and

26Fernald and Matoba (2009) argue that utilization-adjusted total factor productivity rose after the start of the
2007 U.S. recession. However, the series they construct falls sharply after 2009; we thank an anonymous referee for
pointing this out. The counterpart to their series in our model, the exogenous component of TFP, is held constant
over our credit shock exercise.
27Because there are some firms transiting to any given current productivity from each of 7 different last-period

productivity levels, it is diffi cult to distinguish the 3 values of capital selected by unconstrained firms drawing a
common ε last period in this figure. It is harder still to line up current productivities with the capitals selected by
constrained firms last period, since those decisions were affected by the full (k, b, ε) state.
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more small firms. At the same time, we see a few firms, the very largest, growing larger.28

NOTE.—Response to a drop in the credit variable from ζo to ζl. Expectations are consistent with

the calibrated shock process. Top panel is the predetermined distribution of firms over capital and

productivity at the date of the shock; bottom panel is the same distribution at the start of the next

period. Y-axes measure the mass at firms at each (k,ε) combination.

Given a heightened misallocation of production coming in date 2, the largest firms, otherwise

unaffected by credit concerns, respond to the reduced real interest rate by expanding in size.

Such firms adopt the effi cient capital levels dictated by their (S,s) investment policies, given the

productivities and real interest rate they face. The increased ineffi ciency that reduces TFP arises

because small firms, now facing unusually severe collateral requirements, see the gap between their

expected discounted return to capital and the real rate widen. These problems grow in subsequent

dates, and the cross-sectional mean and coeffi cient of variation of the ex-post marginal product

of capital continue rising (figure available on request).

28Our increased dispersion in production is consistent with evidence from Bloom et al (2009) that various measures
of firm-level dispersion rise during recessions.
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Critically, the increase in the mean marginal product of capital coincides with a fall in the

ex-post real interest rate. The marginal product of capital across large, unconstrained firms falls,

with the contrasting rise in the economywide average driven entirely by tighter borrowing limits

for other firms. Capital falls in these firms over time, so their marginal product of capital rises.

With the increased dispersion in the returns to capital, the coeffi cient of variation is seen to rise.

These results in our model following a credit shock are reminiscent of empirical results in Eisfeldt

and Rampini (2006), who show that the benefits of capital reallocation rise in recessions while

the level of reallocation falls. In our model, both forces operate.

Given the discussion above, a credit crisis in our model clearly has a disproportionately

negative impact on smaller, younger firms. Note that this only happens following a drop in ζ;

firms are evenly affected following a shock to TFP. This same distinctive feature of a credit shock

appears in the 2007 U.S. recession data, as may be seen from Figure 8.

To consider more specifically how small firms are affected by a credit shock, we require a

definition. We use Business Employment Dynamics (BED) data from the Bureau of Labor

Statistics to compare small versus large firm employment changes in the U.S., and there identify

small firms as those with less than 100 employees. The employment share across such firms was

roughly 38 percent at the start of 2007 (and on average over 1993-2006). Thus, we identify small

firms in our model as firms with (k, ε) pairs that, in an average date, comprise the bottom 38

percent of employment. Defined as such, one period after the impact of our credit shock, the

number of small firms rises by 1.3 percentage points, and their average employment falls by 6.7

percent, whereas economywide employment falls by 3.5 percent.

Figure 8 displays net employment changes in the BED from quarter to quarter between

1992Q3 and 2011Q3. The solid series is the change in total employment, the dotted series is

the change among firms with less than 100 employees, and the dashed series is the change among

firms with over 1000 employees. During the 2001 recession, small firms and large firms initially

contracted roughly equally, as would be consistent with the implications of a productivity shock

in our model. By contrast, note that small firms reduced their employment roughly twice as

much as large firms did over the 2007 recession, as consistent with the implications of a credit

shock in our model. The relative employment decline among small firms over 2007Q4 - 2009Q2,

the decline among small firms relative to the total decline, was roughly 47 percent. This is

almost 10 percent more than the fall consistent with their initial employment share. Examining
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a peak-to-trough comparison in our model, we find a relative employment decline of roughly 61

percent across small firms.

NOTE.—Net employment changes (gross job growth less gross losses), measured in thousands. Small

firms defined as firms with employment under 100; large firms as firms with employment over 1000.

Data source is Business Employment Dynamics, constructed from the Quarterly Census of Employ-

ment and Wages. Data include all firms covered by state unemployment insurance programs, which

is roughly 98 percent of nonfarm payrolls.

On balance, we take the following observations from Figures 6 - 8. A tightening of collateral

constraints alone, a purely financial shock, drives large and persistent real effects in our model

economy. It does so because it moves the distribution of firm-level capital further away from

the effi cient one consistent with the firm-level productivity distribution (and capital specificity),

allocating insuffi cient capital to more small firms and putting downward pressure on interest

rates. This implies a disproportionate decline in production among small firms relative to large

firms consistent with that observed over the 2007 U.S. recession. In the example we have shown

here, the misallocation of production arising from tight financial conditions is compounded by

the reductions in aggregate capital and labor that it causes. There are protracted adjustments
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in aggregate quantities lasting a decade or more, and GDP is ultimately reduced by 4 percent,

while aggregate consumption is reduced by 1 percent.

Until now, we have considered the implications of a protracted financial crisis, in that credit

conditions do not improve. We next consider the recovery. We assume the same financial shock

we studied in Figure 6 lasts for 4 periods; thereafter, beginning in date 5, we allow a gradual

recovery of credit conditions, returning the value of collateral to ζo at rate 1− pl.

In Table 5, we compare the peak-to-trough results of our model with the 2007 recession.

Focus first on row 2, the 4-period credit crisis described above wherein ζ falls to ζ l in date 1

and stays there until date 5. Notice that, driven only by this simple financial shock, our model

generates 78 percent of the empirical drop in GDP, 57 of the observed fall in hours worked and 60

percent of the fall in measured TFP. As noted above, the empirical drop in debt is reproduced

by construction. However, because our households are very responsive to anticipated changes in

the returns to saving, it produces an investment response slightly larger than the data, and about

25 percent of the observed consumption decline. Our consumption series ultimately falls by 2.5

percent; however that happens two periods after the GDP trough in date 4.

TABLE 5. PEAK-TO-TROUGH DECLINES: U.S. 2007 RECESSION AND MODEL

Trough GDP I N C TFP Debt

data 2009Q2 5.59 18.98 6.03 4.08 2.18 25.94

4-pd crisis 4 4.38 21.88 3.42 0.99 1.30 25.96

z-shock (ρz) 1 3.16 11.63 1.66 1.52 2.18 0.24

ζ-shock (ρz) 4 3.80 18.40 2.85 0.97 1.09 22.14

NOTE.—Debt data is fall in real stock of commercial and industrial loans at commercial banks between

2008Q4 and 2011Q4; all other series measured at GDP trough date listed in column 2. Excluding

debt, data in row 1 is described in Figure 5. Row 2 is 4-period credit crisis described in the text;

results here are the same whether the financial recovery starting in date 5 is immediate or gradual.

Row 3 is a negative productivity shock with persistence ρz and date 1 value chosen to match empirical

drop in measured TFP. Row 4 is a credit shock with persistence ρz and date 1 value chosen to match

empirical drop in debt.

The third row of Table 5 presents the model’s peak-to-trough results in response to a per-

sistent technology shock. This supports our earlier discussion of the challenge the 2007 U.S.
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recession presents for models driven exclusively by aggregate productivity shocks. On its own,

a TFP shock selected to match the empirical drop in measured TFP fails across the board in

explaining the magnitude of this recession. The predicted GDP drop is 56.5 percent that in the

data, while the model explains only 61.3 and 27.5 percent of the declines in U.S. private invest-

ment and total employment hours, respectively. The response in consumption is comparable

to that following a credit shock. Because the reduction in debt under a TFP shock is driven

purely by changes in firms’investment demand, the model fails badly there, generating less than

1 percent of the observed decline.

The final row of Table 5 further illustrates the distinct nature of our model’s response to

financial versus real shocks. There, we subject the economy to the same date-1 credit shock as

in row 2. However, for comparability with the TFP shock in row 3, we assume ζ immediately

thereafter begins moving back toward its ordinary value at rate 1 − ρz. Two findings from this

exercise are interesting. First, although ζ has the same reversion rate as does z in row 3, the

GDP trough occurs in date 4 rather than date 1. Second, the ultimate fall in each series is far

closer to the 4-period credit crisis than the TFP shock exercise.

Finally, our complete credit-driven recession is shown in Figure 9. In dates 1 through 4,

ζ = ζ l; thereafter, ζ reverts toward ζo at the rate 1−pl. Three aspects of this figure are worthy of

note. First, so long as GDP or consumption is adopted as our measure, the effects of a large credit

shock are not rapidly reversed. While loan markets start improving in year 5, GDP remains 4.3

percent below average in that date. Measuring from date 4, the shock’s half-life is just under

2 years, while GDP’s is just over 3.29 Consumption takes longer to return to normal, with a

half-life around 5 periods. The slow recovery of output and consumption arises in part from

the fact that the distribution of capital is slow to settle back to its pre-shock state. As a result,

aggregate productivity remains below average for several periods, as seen in the third panel of

the figure. Beyond this, it takes many periods to rebuild the aggregate capital stock; capital is

5 percent below normal as of date 5, and it falls another 1.5 percent over the following two dates

while investment remains very low.

29The gradual recovery in our model is even more striking when we fully restore financial conditions in date 5. In
that case, GDP recovers only 16 percent in date 5, and its half-life is 1.5 years. By contrast, if we instead delivered
the economy a one standard deviation TFP shock for 4 periods, and then fully eliminated it in date 5, GDP would
complete 94 percent of its recovery instantaneously, while recoveries in employment and investment would be even
faster. These figures are available on request.
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NOTE.— Response to a drop in the credit variable from ζo to ζl. Expectations consistent with

calibrated shock processes. Credit variable is at crisis level through date 4, then recovers at rate 1−pl

(0.3125) starting in date 5. Y-axes measure percentage deviations from simulation means.

Second, once the credit recovery begins, aggregate productivity starts improving. However,

consumption does not begin to recover in date 5. Given raised demand for investment goods,

and output’s failure to rebound rapidly, households allow their consumption to fall for two more

periods and thereafter raise it only very slowly.

Third, it is the labor input that drives the recovery. Anticipating rises in endogenous pro-

ductivity, and thus improved returns to saving, households raise their hours worked by about 26

percent between years 4 and 5. In the next date, the allocation of capital across firms begins

moving back toward normal, and the resulting improvement in productivity directly encourages

a further large rise in the labor input to feed investment. By year 7, hours worked is back to

normal. Thereafter, it overshoots its average level by just over 1 percent and remains high for

many periods while the capital stock is being rebuilt.
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VII. Concluding remarks

We have developed a dynamic stochastic general equilibrium model with persistent, firm-level

shocks to total factor productivity, costly investment reversibility and collateralized borrowing

constraints. We have calibrated the model to microeconomic investment and financial data, as well

as overall measures of borrowing by non-financial firms. Our resulting economy is characterized

by a nontrivial distribution of firms over productivity, debt and capital that shapes aggregate

output and total factor productivity.

Firms respond endogenously to the frictions they face and, over time, build suffi cient pre-

cautionary savings so as to ensure that borrowing limits will not affect their investment. Only

a small subset of the firms in our economy have investment activities curtailed by their current

ability to borrow. Nonetheless, absent any real shock to the economy, we find that a credit crisis

can generate a recession that is not only large, but persistent. Because tight borrowing conditions

deliver a long-lived disruption to the distribution of capital, and thus to endogenous aggregate

productivity, their aftermath is a gradual recovery in output.

The recession generated in our model by a credit shock is qualitatively different from that

following a negative shock to aggregate productivity, and it more closely resembles the 2007 U.S.

recession in several respects. The decline in GDP is gradual. Consumption initially rises. The

responses in investment, employment and GDP are unusually severe relative to the fall in TFP.

The decline in measured TFP that accompanies these movements is similar to that in the data.

Moreover, employment declines among small firms are disproportionately large.

While capturing several aspects of the recent U.S. recession, the credit shock we have con-

sidered here does not deliver the unusually slow recovery in investment and employment over the

18 months of data since the trough of the recession in 2009Q2. It is possible that tight credit

has affected not only business fixed investment, but also firms’ability to finance working capi-

tal used to pay wages, and we know that lending conditions did not fully recover by the end of

2010. However, no such explanation is likely to reconcile the observed changes in investment and

employment with the growth in TFP. A more likely suggestion proposed by Ohanian (2010) is

that time-varying distortions in the labor market have been important in shaping employment

over this recession. Given the complexity of our current model, introducing additional frictions

to drive such distortions is beyond the scope of this paper; we leave this to future research.
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Appendix A. Capital decision rules

The capital rules for constrained firms are described in section IV-B. As stated in section IV-

A, the decision rule for an unconstrained firm is characterized by reference to two target capitals,

an upward target, k∗u, and a downward target, k
∗
d, solving:

k∗u (ε; s, µ) = arg max
k′

[
−p(s, µ)k′ + β

Ns∑
m=1

Nε∑
j=1

πslmπijW0

(
k′, 0, εj ; sm,Γ(sl, µ)

)]

k∗d (ε; s, µ) = arg max
k′

[
−p(s, µ)θkk

′ + β

Ns∑
m=1

Nε∑
j=1

πslmπijW0

(
k′, 0, εj ; sm,Γ(sl, µ)

)]
.

Each target depends only on the aggregate state and the firm’s ε. Further, the downward target

exceeds the upward target: k∗d > k∗u, since θk < 1 and W0 is strictly increasing in k. The latter

is confirmed by inspection of (14) - (17), given the strictly increasing net earnings function, (13).

Given a constant price associated with raising its capital stock, and because W0 is increasing

in k, the firm solves the upward adjustment problem in (16) by setting its future capital as close to

its upward target as non-negative investment permits: ku (ε) = max {(1− δ) k, k∗u (ε)}. Similarly,

it solves the downward adjustment problem in (17) by selecting a capital as near the downward

target as non-positive investment permits: kd (ε) = min {(1− δ) k, k∗d (ε)}.

From the conditional adjustment rules above, it is clear that an unconstrained firm of type

(k, b, ε) will select one of three capital levels, k′ ∈ {k∗u (ε) , k∗d (ε) , (1− δ) k}. Which one it selects

depends only on where its current capital lies in relation to the targets. Recall that k∗u (ε) < k∗d (ε).

If (1− δ)k < k∗u (ε), then ku(ε) = k∗u (ε), kd (ε) = (1− δ) k, and the firm adopts k′ = ku (ε) (since

(1−δ)k lies in the ku(ε) choice set). If (1−δ)k > k∗d (ε), then ku(ε) = (1−δ)k, kd (ε) = k∗d (ε), and

the firm sets k′ = kd (ε). Finally, if k∗u (ε) < (1− δ)k < k∗d (ε), then k′ = ku(ε) = kd(ε) = (1− δ)k.

Collecting these observations, we obtain the (S,s) decision rule for capital listed in equation 20.

Appendix B. Numerical method

The solution algorithm replaces the aggregate law of motion Γ with forecasting rules con-

ditional on the current exogenous state, Γnm (sl,m, ϑ1, ϑ2), l = 1, . . . , Ns, using the approximate

endogenous aggregate state (m,ϑ1, ϑ2) instead of µ. As described in the text, m is the uncon-

ditional mean of the distribution of capital and the variable ϑj = 1 iff there was a credit shock
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j = 1 or 2 periods ago. We iterate over forecasting rules, n = 1, 2, . . ., until they converge.

In each iteration, we solve for firm value functions in the inner loop.30 First, the unconstrained

firm value functionW is determined using (14) - (17).31 This yields decision rules forKw, Bw, and

Dw from (20) - (23), which are used to solve V , the constrained firm value function, using (9) and

(24) - (27), withW0 serving as the initial guess for V0. In each case, we solve firm values at a set of

points from the firm-level state vector; then we use non-linear multivariate piecewise polynomial

spline interpolation to approximate the value function consistent with these data. When solving

the constrained firm problem, we find it useful to solve for a value function V̂
(
k, bk , ε; ·

)
rather

than the primitive V (k, b, ε; ·); this lets us restrict the knot points to a feasible set of (k, b, ε).

In the outer loop, we simulate the model for T = 10, 000 periods, and assume an initial

distribution of firms consistent with the steady state of the model. The distribution over (k, b, ε)

is stored using a large 3 dimensional grid. Firms’decisions are interpolated onto this grid using

weights so as to preserve their average values.

At each date of the simulation, the distribution µt implied by the previous date’s equilibrium

decisions is used to compute mt, while the st realization establishes zt and ζt. Based on this

information, alongside ϑ1t and ϑ2t, firms useW , V̂ and Γnm to forecast their future values associated

with any feasible choice of k′ and b′. This lets them select their optimal production, debt, and

investment in response to any given set of prices (p, q, w). We solve for the equilibrium (pt, qt, wt)

so that the market-clearing conditions (iv) - (vi) in section III-C are satisfied and asset markets

clear. This give us µt+1, the distribution of firms at the start of the next period. After we have

completed the simulation, we use the stored data {st,mt, ϑ1,t, ϑ2,t,mt+1, pt}Tt=1 to estimate new

forecasting rules with which to begin the n+ 1 iteration of the algorithm.

B1. Accuracy

Despite the rich distribution of firms in our economy, agents predict prices and the future

proxy aggregate state well with no more information on the current distribution than the mean

capital stock and two indicators of recent credit conditions. Tables B1 and B2 present the

forecasting rules for the future mean capital stock, m′, and the marginal valuation of output, p.

30The inclusion of indicator variables in forecasting rules implies they are part of the aggregate exogenous state
vector. Consistent with this, in our model solution, firms’value functions include ϑ1 and ϑ2, alongside z and ζ, as
arguments. That implies the size of the exogenous aggregate state perceived by firms is actually Nz ×Nζ × 2× 2.
Further, ϑ′2 = 1 if ϑ1 = 1 and ϑ

′
1 = 1 if current ζ is at its low value. Since ϑ1 and ϑ2 evolve over time as deterministic

functions of ζ and ζ−1, it is unnecessary to describe them as exogenous state variables in our exposition.
31We do not need a separate forecasting rule for w; given the form of our utility function, w is determined by p.
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As credit shocks are part of the exogenous stochastic process of the model and take on one of

two values, we have achieved accurate forecasting rules by introducing two indicator variables, ϑ1

and ϑ2. The resulting regressions are more accurate than alternatives that add additional endoge-

nous state variables, for example, the debt held by ordinary firms facing collateral constraints,

or the aggregate debt to assets ratio. If we omit ϑj , then such additional regressors improve the

accuracy of our forecasting rules. They do not improve forecasting accuracy once the indicator

variables are introduced. Further, the inclusion of additional endogenous aggregate variables in

forecasting rules requires their introduction as additional arguments of firms’ value functions.

This is numerically cumbersome, given the dimensionality of the nonlinear problem. Specifically,

we use tensor-product piecewise polynomial cubic splines to approximate firms’expected future

value functions, and these are already functions of 6 variables, 3 of which are continuous.

Table B2 shows the forecasting rule for p. As explained above, this is only used in an

inner loop that solves for firms’value functions using forecasting rules for both m′ and p; the p

forecasts are not used in the outer loop. Table B2 shows all R2 are high (above 0.99974) and

standard errors are small (below 0.028%).32 In the context of accuracy of forecasting rules for

heterogeneous agent models, Den Haan (2010) notes R2 are averages and scaled by the variance

of the dependent variable. We provide a robust statistic by reporting the maximum forecast error

for each regression. The maximum percentage error for p is 0.076%. The forecasting rules for p

used to solve firms’value functions are extremely precise.

We assess the accuracy of the forecasting rule for m′ in Table B1. Again, the R2 are high,

and the percent standard errors are small. The maximum error, maxt |log m̂t − logmt|, is 0.432%.

For an additional assessment of the accuracy of our forecast rule, we calculate Den Haan’s (2010)

maximum forecast error for a multi-step forecast. In the model solution algorithm described

above, the forecasting rule used to derive log m̂′is:

log m̂t+1 = βi0 + βi1 logmt + βi2ϑ1,t + βi3ϑ2,t, i = 1, . . . , 6.

Summarize this function as log m̂t+1 = B (i, logmt, ϑ1,t, ϑ2,t), and notice that mt represents the

actual mean of the distribution of capital while m̂t+1 is a one-period forecast. We emphasize

that only one-step ahead forecasts are ever used to solve the model. Den Haan (2010) argues

that a proper accuracy test should generate {m̃t}Tt=1 using log m̃t+1 = B (i, log m̃t, ϑ1,t, ϑ2,t), for

32As dependent variables are in logs, we interpret 100 times the reported value as percentage errors.
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t = 1, . . . , T , with m̃1 = m1. This involves forecasting an entire history for capital without

ever updating the forecast. That is, the mean of the actual distribution of capital is never

used to update a forecasted value; rather, the forecasted value for period t is used to forecast

a value for period t + 1. Den Haan suggests evaluating accuracy using the maximum error

emax = maxt |log m̃t − logmt|; we also report the average error emean = 1
T−1

∑T
t=2 |log m̃t − logm|.

Our simulation length is T = 10, 000 and, for the forecasting rule in Table B1, emax = 0.008149

and emean = 0.001003. Towards establishing the accuracy of our forecast, we compare these values

with those for two models in Krusell and Smith (1998). The first is their baseline model, solved

using a 2500 period simulation. It has a maximum error of 0.003 and a mean error of 0.0008.

The second is their stochastic beta model; it has corresponding error values of 0.0202 and 0.0027.

Both our maximum and mean errors are in the middle of the range defined by these two models.

Since these two models have been found to be solved extremely accurately, we conclude that our

forecast rule for the approximate aggregate state, and thus our model solution, is highly accurate.
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TABLE B1. CONDITIONAL FORECASTING RULES: AGGREGATE CAPITAL

obs. β0 β1 β2 β3 S.E. adj. R2 max. error

Panel A: conditional on s1 = (z1, ζo)

2287 0.03742 0.79925 −0.00566 −0.00338 0.00056 0.99966 0.00432

(0.00007) (0.00031) (0.00008) (0.00007)

Panel B: conditional on s2 = (z1, ζ l)

0185 0.02926 0.79324 −0.00231 −0.00363 0.00094 0.99931 0.00353

(0.00039) (0.00170) (0.00020) (0.00019)

Panel C: conditional on s3 = (z2, ζo)

4724 0.05716 0.79827 −0.00609 −0.00369 0.00055 0.99964 0.00388

(0.00006) (0.00023) (0.00006) (0.00005)

Panel D: conditional on s4 = (z2, ζ l)

0324 0.04846 0.79386 −0.00262 −0.00346 0.00100 0.99913 0.00338

(0.00043) (0.00145) (0.00015) (0.00014)

Panel E: conditional on s5 = (z3, ζo)

2316 0.07793 0.79627 −0.00601 −0.00407 0.00051 0.99970 0.00327

(0.00010) (0.00029) (0.00008) (0.00007)

Panel F: conditional on s6 = (z3, ζ l)

0164 0.07130 0.78481 −0.00295 −0.00386 0.00106 0.99876 0.00343

(0.00088) (0.00248) (0.00022) (0.00021)

NOTE.—Regressions: ln(m′) = β0+ β1 ln(m) + β2ϑ1+ β3ϑ, where m is aggregate capital and ϑ1 and

ϑ2 are crisis dummies taking on value 1 if ζt−1 = ζl and if ζt−2 = ζl, respectively.
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TABLE B2. CONDITIONAL FORECASTING RULES: OUTPUT VALUATION

obs. β0 β1 β2 β3 S.E. adj. R2 max. error

Panel A: conditional on s1 = (z1, ζo)

2287 0.87276 −0.40899 0.00360 0.00116 0.00008 0.99997 0.00061

(0.00001) (0.00005) (0.00001) (0.00001)

Panel B: conditional on s2 = (z1, ζ l)

0185 0.86616 −0.41771 0.00361 0.00275 0.00027 0.99981 0.00075

(0.00011) (0.00048) (0.00006) (0.00005)

Panel C: conditional on s3 = (z2, ζo)

4724 0.83748 −0.40234 0.00349 0.00115 0.00008 0.99997 0.00075

(0.00001) (0.00003) (0.00001) (0.00001)

Panel D: conditional on s4 = (z2, ζ l)

0324 0.83128 −0.41220 0.00372 0.00254 0.00028 0.99976 0.00076

(0.00012) (0.00041) (0.00004) (0.00004)

Panel E: conditional on s5 = (z3, ζo)

2316 0.80195 −0.39617 0.00355 0.00126 0.00007 0.99998 0.00061

(0.00001) (0.00004) (0.00001) (0.00001)

Panel F: conditional on s6 = (z3, ζ l)

0164 0.79657 −0.40865 0.00392 0.00264 0.00026 0.99974 0.00074

(0.00022) (0.00061) (0.00005) (0.00005)

NOTE.—Regressions: ln(p) = β0 + β1 ln(m) + β2ϑ1 + β3ϑ, where m is aggregate capital and ϑ1 and

ϑ2 are crisis dummies taking on value 1 if ζt−1 = ζl and if ζt−2 = ζl, respectively.

Appendix C. Financial data

We report three moments in the text associated with corporate sector financing behavior: the

time-averaged cross-sectional correlation of size (book assets) with leverage (the ratio of debt to

book assets) over 1954-2011 (0.022), the average standard deviation in firms’cash-to-asset ratios

over 1954-2011 (0.161), and the aggregate cash-to-asset ratio in 2006 (0.102). These moments are

drawn from an unbalanced sample of nonfinancial firms similar to that examined by Bates, Kahle

and Stulz (2009). In each year, our sample includes all Compustat firms incorporated in the U.S.
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that have positive book assets (data item #6) and positive sales (item #12), excluding financial

firms (SIC 6000-6999) and utilities (SIC 4900-4999). Cash is defined as cash and marketable

securities (data item #1), and debt is long-term debt (item #9) plus current liabilities (item

#34). Tables C1-C3 report moments from each year in our sample.

TABLE C1. SIZE, LEVERAGE AND CASH OVER 1954-1973

year obs. aggregate cash ratio sd(cash ratio) corr(size,leverage)

1954 538 0.162 0.104 0.052

1955 549 0.174 0.105 0.023

1956 571 0.127 0.097 0.016

1957 591 0.121 0.093 0.008

1958 608 0.122 0.094 0.024

1959 627 0.124 0.099 0.031

1960 1,124 0.117 0.107 0.020

1961 1,246 0.113 0.107 0.014

1962 1,446 0.113 0.101 0.009

1963 1,630 0.113 0.103 -0.002

1964 1,776 0.100 0.105 -0.005

1965 1,933 0.093 0.104 -0.008

1966 2,095 0.077 0.098 -0.002

1967 2,286 0.072 0.098 0.009

1968 2,877 0.074 0.109 0.017

1969 3,075 0.062 0.106 0.022

1970 3,246 0.055 0.094 0.023

1971 3,352 0.064 0.097 0.023

1972 3,433 0.066 0.098 0.025

1973 3,729 0.068 0.095 0.009
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TABLE C2. SIZE, LEVERAGE AND CASH OVER 1974-1993

year obs. aggregate cash ratio sd(cash ratio) corr(size,leverage)

1974 4,953 0.061 0.103 -0.004

1975 4,958 0.067 0.105 0.000

1976 4,946 0.076 0.110 -0.005

1977 4,920 0.068 0.109 -0.010

1978 4,778 0.066 0.116 -0.015

1979 4,671 0.059 0.119 -0.021

1980 4,748 0.056 0.142 -0.016

1981 4,771 0.052 0.156 -0.001

1982 4,967 0.054 0.153 -0.006

1983 5,174 0.067 0.187 -0.005

1984 5,146 0.061 0.174 -0.006

1985 5,331 0.062 0.175 -0.016

1986 5,458 0.069 0.189 -0.005

1987 5,441 0.070 0.189 -0.002

1988 5,259 0.058 0.175 0.029

1989 5,139 0.051 0.176 0.031

1990 5,130 0.049 0.178 0.034

1991 5,234 0.053 0.195 0.041

1992 5,545 0.054 0.198 0.045

1993 5,828 0.055 0.203 0.048
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TABLE C3. SIZE, LEVERAGE AND CASH OVER 1994-2011

year obs. aggregate cash ratio sd(cash ratio) corr(size,leverage)

1994 6,107 0.053 0.191 0.044

1995 6,755 0.055 0.215 0.043

1996 6,900 0.060 0.229 0.046

1997 6,734 0.062 0.228 0.049

1998 6,734 0.062 0.234 0.043

1999 6,637 0.070 0.250 0.041

2000 6,263 0.067 0.246 0.039

2001 5,703 0.073 0.238 0.041

2002 5,327 0.084 0.233 0.044

2003 5,076 0.098 0.240 0.044

2004 4,893 0.106 0.245 0.044

2005 4,727 0.103 0.243 0.046

2006 4,503 0.102 0.246 0.046

2007 4,275 0.096 0.243 0.050

2008 4,051 0.097 0.222 0.053

2009 3,976 0.116 0.226 0.057

2010 3,851 0.121 0.228 0.059

2011 3,568 0.118 0.227 0.055
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